BZOJ 2822: [AHOI2012]树屋阶梯 [Catalan数 高精度]
2822: [AHOI2012]树屋阶梯
Time Limit: 1 Sec Memory Limit: 128 MB
Submit: 779 Solved: 453
[Submit][Status][Discuss]
Description
.jpg)
以树屋高度为4尺、阶梯高度N=3尺为例,小龙一共有如图1.2所示的5种
搭 建方法:
.jpg)
Input
一个正整数 N(1≤N≤500),表示阶梯的高度
Output
一个正整数,表示搭建方法的个数。(注:搭建方法个数可能很大。)
1 ≤N≤500
呵呵了..........这种裸的卡特兰数套一个高精度就出到省选里了.....
http://www.cnblogs.com/candy99/p/6400735.html
直接用上一题的质因子分解,得到答案用个高*低就行了
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
typedef long long ll;
const int N=1e4+;
inline int read(){
char c=getchar();int x=,f=;
while(c<''||c>''){if(c=='-')f=-;c=getchar();}
while(c>=''&&c<=''){x=x*+c-'';c=getchar();}
return x*f;
}
int n;
bool notp[N];
int p[N],lp[N];
void sieve(int n){
for(int i=;i<=n;i++){
if(!notp[i]) p[++p[]]=i,lp[i]=p[];
for(int j=;j<=p[]&&i*p[j]<=n;j++){
notp[i*p[j]]=;
lp[i*p[j]]=j;
if(i%p[j]==) break;
}
}
}
int e[N];
void add(int x,int d){
while(x!=){
e[lp[x]]+=d;
x/=p[lp[x]];
}
}
struct Big{
int d[N],l;
Big():l(){memset(d,,sizeof(d));d[]=;}
int& operator[](int x){return d[x];}
}ans;
void Mul(Big &a,int b){
int g=;
for(int i=;i<=a.l;i++){
g+=a[i]*b;
a[i]=g%;
g/=;
}
for(;g;g/=) a[++a.l]=g%;
}
void Print(Big &a){
for(int i=a.l;i>=;i--) printf("%d",a[i]);
}
void solve(){
for(int i=*n;i>=n+;i--) add(i,);
for(int i=;i<=n;i++) add(i,-);
add(n+,-);
for(int j=;j<=p[];j++) for(;e[j];e[j]--) Mul(ans,p[j]);
Print(ans);
}
int main(){
freopen("in","r",stdin);
n=read();
sieve(n<<);
solve();
}
BZOJ 2822: [AHOI2012]树屋阶梯 [Catalan数 高精度]的更多相关文章
- bzoj 2822 [AHOI2012]树屋阶梯 卡特兰数
因为规定n层的阶梯只能用n块木板 那么就需要考虑,多出来的一块木板往哪里放 考虑往直角处放置新的木板 不管怎样,只有多的木板一直扩展到斜边表面,才会是合法的新状态,发现,这样之后,整个n层阶梯就被分成 ...
- BZOJ 2822: [AHOI2012]树屋阶梯
Description 求拼成阶梯状的方案数. Sol 高精度+Catalan数. 我们可以把最后一行无线延伸,所有就很容易看出Catalan数了. \(f_n=f_0f_{n-1}+f_1f_{n- ...
- BZOJ2822[AHOI2012]树屋阶梯——卡特兰数+高精度
题目描述 暑假期间,小龙报名了一个模拟野外生存作战训练班来锻炼体魄,训练的第一个晚上,教官就给他们出了个难题.由于地上露营湿气重,必须选择在高处的树屋露营.小龙分配的树屋建立在一颗高度为N+1尺(N为 ...
- BZOJ2822:[AHOI2012]树屋阶梯(卡特兰数,高精度)
Description 暑假期间,小龙报名了一个模拟野外生存作战训练班来锻炼体魄,训练的第一个晚上,教官就给他们出了个难题.由于地上露营湿气重,必须选择在高处的树屋露营.小龙分配的树屋建立在一颗高度为 ...
- bzoj3907 网格 & bzoj2822 [AHOI2012]树屋阶梯——卡特兰数+高精度
题目:bzoj3907:https://www.lydsy.com/JudgeOnline/problem.php?id=3907 bzoj2822:https://www.lydsy.com/Jud ...
- 【BZOJ 2822】2822: [AHOI2012]树屋阶梯(卡特兰数+高精度)
2822: [AHOI2012]树屋阶梯 Description 暑假期间,小龙报名了一个模拟野外生存作战训练班来锻炼体魄,训练的第一个晚上,教官就给他们出了个难题.由于地上露营湿气重,必须选择在高处 ...
- bzoj2822[AHOI2012]树屋阶梯(卡特兰数)
2822: [AHOI2012]树屋阶梯 Time Limit: 1 Sec Memory Limit: 128 MBSubmit: 879 Solved: 513[Submit][Status] ...
- bzoj 3907 网格 bzoj2822 [AHOI2012]树屋阶梯——卡特兰数(阶乘高精度模板)
题目:https://www.lydsy.com/JudgeOnline/problem.php?id=3907 https://www.lydsy.com/JudgeOnline/problem.p ...
- 【BZOJ 2822】[AHOI2012]树屋阶梯 卡特兰数+高精
这道题随便弄几个数就发现是卡特兰数然而为什么是呢? 我们发现我们在增加一列时,如果这一个东西(那一列)他就一格,那么就是上一次的方案数,并没有任何改变,他占满了也是,然后他要是占两格呢,就是把原来的切 ...
随机推荐
- JAVA爬虫实践(实践一:知乎)
爬虫顺序 1.分析网站网络请求 通过浏览器F12开发者工具查看网站的内容获取方式. 2.模拟HTTP请求,获取网页内容. 可以采用HttpClient,利用JAVA HttpClient工具可以模拟H ...
- fsockopen — 打开一个网络连接或者一个Unix套接字连接
fsockopen (PHP 4, PHP 5, PHP 7) 说明 resource fsockopen ( string $hostname [, int $port = -1 [, int &a ...
- 请问:关于织梦dedecms点击导航上的父栏目进去默认显示第一个子栏目的列表的问题
要设置织梦dedecms点击导航上的父栏目进去默认显示第一个子栏目的列表, 就按照如下图所示的方法进行操作,为什么 点击导航上的父栏目出现死循环呢, 根本浏览不了网页. 请各位大神指点指点,为什么点击 ...
- 【JDBC】Java 连接 MySQL 基本过程以及封装数据库工具类
一. 常用的JDBC API 1. DriverManager类 : 数据库管理类,用于管理一组JDBC驱动程序的基本服务.应用程序和数据库之间可以通过此类建立连接.常用的静态方法如下 static ...
- python通过scapy模块进行arp断网攻击
前言: 想实现像arpsoof一样的工具 arp断网攻击原理: 通过伪造IP地址与MAC地址实现ARP欺骗,在网络发送大量ARP通信量.攻击者 只要持续不断发送arp包就能造成中间人攻击或者断网攻击. ...
- 利用光场进行深度图估计(Depth Estimation)算法之二——匹配算法
光场相机由于能够捕获相机内部光线的强度和方向而得到整个光场,可以实现重聚焦(refocus)和视角变换等功能.进而可以进行深度估计获取深度图,前面说过利用重聚焦的图像进行深度估计,今天说一下利用不同视 ...
- es6重点笔记:对象
1,Object.is():比较两个值是否严格相等,es5的'===',不能判断+0和-0,还有NaN,但是es6的Object.is()可以区分 Object.is(+0, -0); // fals ...
- RocketMQ-事务消费
理论部分在https://www.jianshu.com/p/453c6e7ff81c中的 "三.事务消息".下面从代码层面看一下rockemq的事务消息 一.事务消费端. 从代码 ...
- linux_用户和组
linux用户分为3类: 超级用户:root, UID为0, GID为0 普通用户: 500 -65535, 由root创建 虚拟用户: 1-499 - 系统里傀儡,不能使用,固定存在,满足linux ...
- AI_神经网络监督学习
神经网络的神奇之处在哪? 所有神经网络创造出来的价值,都是由一种机器学习,称之为监督学习, 下面这些例子神经网络效果拔群,通过深度学习获利最多的是在线广告 技术的进步来源于计算机视觉和深度学习 例如: ...