#线段树#洛谷 4269 [USACO18FEB]Snow Boots G
分析
模型转换一下,能通过当且仅当最长的无法通过段小于 \(d\),(这点应该是此题的精华吧)
那么按照最大深度从小到大排序,双指针在线段树上删除无法通过段,求最长区间即可
代码
#include <cstdio>
#include <cctype>
#include <algorithm>
#define rr register
using namespace std;
const int N=100011; struct rec{int x,w,rk;}q[N];
int w[N<<2],wl[N<<2],wr[N<<2],a[N],rk[N],ans[N],n,m;
inline signed iut(){
rr int ans=0; rr char c=getchar();
while (!isdigit(c)) c=getchar();
while (isdigit(c)) ans=(ans<<3)+(ans<<1)+(c^48),c=getchar();
return ans;
}
inline void print(int ans){
if (ans>9) print(ans/10);
putchar(ans%10+48);
}
bool cmp1(int x,int y){return a[x]<a[y];}
bool cmp2(rec x,rec y){return x.x<y.x;}
inline void build(int k,int l,int r){
w[k]=wl[k]=wr[k]=r-l+1;
if (l==r) return;
rr int mid=(l+r)>>1;
build(k<<1,l,mid);
build(k<<1|1,mid+1,r);
}
inline void update(int k,int l,int r,int x){
if (l==r) {w[k]=wl[k]=wr[k]=0; return;}
rr int mid=(l+r)>>1;
if (x<=mid) update(k<<1,l,mid,x);
else update(k<<1|1,mid+1,r,x);
w[k]=max(w[k<<1],w[k<<1|1]);
w[k]=max(w[k],wr[k<<1]+wl[k<<1|1]);
wl[k]=wl[k<<1],wr[k]=wr[k<<1|1];
if (w[k<<1]==mid-l+1) wl[k]+=wl[k<<1|1];
if (w[k<<1|1]==r-mid) wr[k]+=wr[k<<1];
}
signed main(){
n=iut(),m=iut();
for (rr int i=1;i<=n;++i) a[i]=iut(),rk[i]=i;
for (rr int i=1;i<=m;++i) q[i]=(rec){iut(),iut(),i};
sort(rk+1,rk+1+n,cmp1),sort(q+1,q+1+m,cmp2),build(1,1,n);
for (rr int i=1,j=1;i<=m;++i){
for (;j<=n&&a[rk[j]]<=q[i].x;++j)
update(1,1,n,rk[j]);
if (w[1]<q[i].w) ans[q[i].rk]=1;
}
for (rr int i=1;i<=m;++i)
putchar(ans[i]+48),putchar(10);
return 0;
}
#线段树#洛谷 4269 [USACO18FEB]Snow Boots G的更多相关文章
- 线段树||BZOJ5194: [Usaco2018 Feb]Snow Boots||Luogu P4269 [USACO18FEB]Snow Boots G
题面:P4269 [USACO18FEB]Snow Boots G 题解: 把所有砖和靴子排序,然后依次处理每一双靴子,把深度小于等于它的砖块都扔线段树里,问题就转化成了求线段树已有的砖块中最大的砖块 ...
- 线段树 洛谷P3932 浮游大陆的68号岛
P3932 浮游大陆的68号岛 题目描述 妖精仓库里生活着黄金妖精们,她们过着快乐,却随时准备着迎接死亡的生活. 换用更高尚的说法,是随时准备着为这个无药可救的世界献身. 然而孩子们的生活却总是无忧无 ...
- [线段树]洛谷P5278 算术天才⑨与等差数列
题目描述 算术天才⑨非常喜欢和等差数列玩耍. 有一天,他给了你一个长度为n的序列,其中第i个数为a[i]. 他想考考你,每次他会给出询问l,r,k,问区间[l,r]内的数从小到大排序后能否形成公差为k ...
- 区间连续长度的线段树——洛谷P2894 [USACO08FEB]酒店Hotel
https://www.luogu.org/problem/P2894 #include<cstdio> #include<iostream> using namespace ...
- [USACO18FEB] Snow Boots G (离线+并查集)
题目大意:略 网上各种神仙做法,本蒟蒻只想了一个离线+并查集的做法 对所有靴子按最大能踩的深度从大到小排序,再把所有地砖按照积雪深度从大到小排序 一个小贪心思想,我们肯定是在 连续不能踩的地砖之前 的 ...
- 洛谷P2880 [USACO07JAN] Balanced Lineup G(树状数组/线段树)
维护区间最值的模板题. 1.树状数组 1 #include<bits/stdc++.h> 2 //树状数组做法 3 using namespace std; 4 const int N=5 ...
- AC日记——校门外的树 洛谷 P1047
题目描述 某校大门外长度为L的马路上有一排树,每两棵相邻的树之间的间隔都是1米.我们可以把马路看成一个数轴,马路的一端在数轴0的位置,另一端在L的位置:数轴上的每个整数点,即0,1,2,……,L,都种 ...
- 洛谷P4088 [USACO18FEB]Slingshot
题面 大意:给出n个弹弓,可以用ti的时间把xi位置运到yi,在给出m组询问,求xj到yj最小时间. sol:首先如果不用弹弓,时间应为abs(xj-yj).否则时间就是abs(xi-xj)+abs( ...
- 带修主席树 洛谷2617 支持单点更新以及区间kth大查询
题目链接:https://www.luogu.com.cn/problem/P2617 参考博客:https://blog.csdn.net/dreaming__ldx/article/details ...
- 不失一般性和快捷性地判定决策单调(洛谷P1912 [NOI2009]诗人小G)(动态规划,决策单调性,单调队列)
洛谷题目传送门 闲话 看完洛谷larryzhong巨佬的题解,蒟蒻一脸懵逼 如果哪年NOI(放心我这样的蒟蒻是去不了的)又来个决策单调性优化DP,那蒟蒻是不是会看都看不出来直接爆\(0\)?! 还是要 ...
随机推荐
- java+文件读写实现的图书管理系统
一功能 管理员具有的功能 1.增加图书.删除图书.修改图书信息.查询图书.图书列表 2.借阅者管理,通过借阅的书号查询图书信息 3.个人信息修改 读者功能 1.图书借阅 2.图书归还 3.图书查询 4 ...
- AFNetworking整体框架简单整理
一.AFNetworking整体框架是怎样的 1.UIKit集成模块 UIKit 2.请求序列化 Serialization 3.响应序列化 Serialization 4.会话 NSURLSessi ...
- 【Azure 环境】当Azure Key Vault中存储的证书即将过期时,如何设置Alert邮件警报?
问题描述 当Azure Key Vault 中存储的证书即将过期时, 如何设置Alert邮件警报? 问题解答 首先,在创建完一个证书后,需要为证书添加一个"证书联系人" 然后,点击 ...
- Redis之哈希分片原理一致性哈希算法与crc16算法
集群分片模式 如果Redis只用复制功能做主从,那么当数据量巨大的情况下,单机情况下可能已经承受不下一份数据,更不用说是主从都要各自保存一份完整的数据.在这种情况下,数据分片是一个非常好的解决办法. ...
- Zabbix技术分享——zabbix命令详解
在与IT运维的小伙伴交流过程中不少人问到了zabbix_agentd.zabbix_proxy等命令的具体使用问题,为此这一期内容我们来聊聊Zabbix相关命令,其中包括zabbix_server.z ...
- left jon连接查询踩坑记
项目开发中经常会使用到多张表进行关联查询,比如left join关联查询. 如果有一张表A和一张表B,查询语句 SELECT a.*,b.name from A a left join B b On ...
- AutoNumber VsCode插件开发
AutoNumber VsCode插件开发 ::: details 目录 目录 AutoNumber VsCode插件开发 Step. 2: 安装脚手架 Step. 3: 创建空项目 Step. 4: ...
- 【Leetcode 907 907. 子数组的最小值之和】【单调栈dp】
import java.util.LinkedList; class Solution { public int sumSubarrayMins(int[] arr) { int n = arr.le ...
- Adapter分组封装
YCGroupAdapter 01.前沿说明 1.1 案例展示效果 1.2 该库功能和优势 1.3 相关类介绍说明 02.如何使用 2.1 如何引入 2.2 最简单使用 2.3 使用建议 03.常用a ...
- WebView开源库终极方案
目录介绍 01.前沿说明 1.1 案例展示效果 1.2 该库功能和优势 1.3 相关类介绍说明 1.4 WebView知识点 02.如何使用 2.1 如何引入 2.2 最简单使用 2.3 常用api ...