题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=17662

题意:给一棵边有权值的二叉树,节点编号为1~n,1是根节点。求砍掉一些边,只保留q条边,这q条边构成的子树的根节点要求是1,求这颗子树的最大权值。

分析:1.dp[u][i]表示已以u为根节点的子树,保留了i个节点的最大权值。每条边的权值,把它看作是连接的两个节点中的儿子节点的权值。那么总共要保留m+1个节点。

所以有:dp[u][i]=max(dp[u][i],dp[v][k]+dp[u][i-k]+w).ans=dp[1][m+1].

2.dp[u][i]表示u为根节点的子树,保留了i个条边的最大权值。在以u点为根节点的子树中选择了k条边,那么u的儿子节点v代表的子树中至多选k-1条边,因为如果在v子树中选边,那么u到v的边必选。

所以有:dp[u][i]=max(dp[u][i],dp[u][i-k]+dp[v][k-1]+w).ans=dp[1][m].

方法1的代码:

#include <cstdio>
#include <cstring>
#include <cmath>
#include <iostream>
#include <algorithm>
#include <queue>
#include <cstdlib>
#include <stack>
#include <vector>
#include <set>
#include <map>
#define LL long long
#define mod 1000000007
#define inf 0x3f3f3f3f
#define N 110
#define clr(a) (memset(a,0,sizeof(a)))
using namespace std;
struct edge
{
int v,w,next;
edge(){}
edge(int v,int w,int next):v(v),w(w),next(next){}
}e[*N];
int head[N],dp[N][N],num[N],tot,n,m;
void addedge(int u,int v,int w)
{
e[tot]=edge(v,w,head[u]);
head[u]=tot++;
}
void dfs(int u,int fa)
{
num[u]=;
for(int i=head[u];~i;i=e[i].next)
{
int v=e[i].v,w=e[i].w;
if(v==fa)continue;
dfs(v,u);
num[u]+=num[v];
for(int j=num[u];j>=;j--)
for(int k=;k<j&&k<=num[v];k++)//注意这里k<j.因为子树根节点u点必选,在子树节点中至多选j-1个
dp[u][j]=max(dp[u][j],dp[u][j-k]+dp[v][k]+w);
}
}
int main()
{
int u,v,w;
while(scanf("%d%d",&n,&m)>)
{
memset(head,-,sizeof(head));
clr(dp);tot=;
for(int i=;i<n;i++)
{
scanf("%d%d%d",&u,&v,&w);
addedge(u,v,w);
addedge(v,u,w);
}
dfs(,-);
printf("%d\n",dp[][m+]);
}
}

方法2的代码:

#include <cstdio>
#include <cstring>
#include <cmath>
#include <iostream>
#include <algorithm>
#include <queue>
#include <cstdlib>
#include <stack>
#include <vector>
#include <set>
#include <map>
#define LL long long
#define mod 1000000007
#define inf 0x3f3f3f3f
#define N 110
#define clr(a) (memset(a,0,sizeof(a)))
using namespace std;
struct edge
{
int v,w,next;
edge(){}
edge(int v,int w,int next):v(v),w(w),next(next){}
}e[*N];
int head[N],dp[N][N],tot,n,m;
void addedge(int u,int v,int w)
{
e[tot]=edge(v,w,head[u]);
head[u]=tot++;
}
void dfs(int u,int fa)
{
for(int i=head[u];~i;i=e[i].next)
{
int v=e[i].v,w=e[i].w;
if(v==fa)continue;
dfs(v,u);
for(int j=m;j>=;j--)
for(int k=;k<=j;k++)
dp[u][j]=max(dp[u][j],dp[u][j-k]+dp[v][k-]+w);
}
}
int main()
{
int u,v,w;
while(scanf("%d%d",&n,&m)>)
{
memset(head,-,sizeof(head));
clr(dp);tot=;
for(int i=;i<n;i++)
{
scanf("%d%d%d",&u,&v,&w);
addedge(u,v,w);
addedge(v,u,w);
}
dfs(,-);
printf("%d\n",dp[][m]);
}
}

ural1018(树形dp)的更多相关文章

  1. URAL1018 Binary Apple Tree(树形DP)

    题目大概说一棵n结点二叉苹果树,n-1个分支,每个分支各有苹果,1是根,要删掉若干个分支,保留q个分支,问最多能保留几个苹果. 挺简单的树形DP,因为是二叉树,都不需要树上背包什么的. dp[u][k ...

  2. 树形DP小结

    树形DP1.简介:树是一种数据结构,因为树具有良好的子结构,而恰好DP是从最优子问题更新而来,那么在树上做DP操作就是从树的根节点开始深搜(也就是记忆化搜索),保存每一步的最优结果.tips:树的遍历 ...

  3. 树形 DP 总结

    树形 DP 总结 本文转自:http://blog.csdn.net/angon823/article/details/52334548 介绍 1.什么是树型动态规划 顾名思义,树型动态规划就是在“树 ...

  4. poj3417 LCA + 树形dp

    Network Time Limit: 2000MS   Memory Limit: 65536K Total Submissions: 4478   Accepted: 1292 Descripti ...

  5. COGS 2532. [HZOI 2016]树之美 树形dp

    可以发现这道题的数据范围有些奇怪,为毛n辣么大,而k只有10 我们从树形dp的角度来考虑这个问题. 如果我们设f[x][k]表示与x距离为k的点的数量,那么我们可以O(1)回答一个询问 可是这样的话d ...

  6. 【BZOJ-4726】Sabota? 树形DP

    4726: [POI2017]Sabota? Time Limit: 20 Sec  Memory Limit: 128 MBSec  Special JudgeSubmit: 128  Solved ...

  7. 树形DP+DFS序+树状数组 HDOJ 5293 Tree chain problem(树链问题)

    题目链接 题意: 有n个点的一棵树.其中树上有m条已知的链,每条链有一个权值.从中选出任意个不相交的链使得链的权值和最大. 思路: 树形DP.设dp[i]表示i的子树下的最优权值和,sum[i]表示不 ...

  8. 树形DP

    切题ing!!!!! HDU  2196 Anniversary party 经典树形DP,以前写的太搓了,终于学会简单写法了.... #include <iostream> #inclu ...

  9. BZOJ 2286 消耗战 (虚树+树形DP)

    给出一个n节点的无向树,每条边都有一个边权,给出m个询问,每个询问询问ki个点,问切掉一些边后使得这些顶点无法与顶点1连接.最少的边权和是多少.(n<=250000,sigma(ki)<= ...

  10. POJ2342 树形dp

    原题:http://poj.org/problem?id=2342 树形dp入门题. 我们让dp[i][0]表示第i个人不去,dp[i][1]表示第i个人去 ,根据题意我们可以很容易的得到如下递推公式 ...

随机推荐

  1. cocos2d-x 3.0来做一个简单的游戏教程 win32平台 vs2012 详解献给刚開始学习的人们!

    原代码来自于网络,因为cocos2d-x 3.0的资料,的确不多,与曾经版本号的接口非常难对上, 所以网上非常多样例都无法调试,对于新学习cocos2d-x 的同学,难度添加了,所以出一个超具体的样例 ...

  2. 关于Opengl中将24位BMP图片加入一个alpha通道并实现透明的问题

    #include <windows.h>#include <GL/glut.h>#include <GL/glaux.h>#include <stdio.h& ...

  3. Eequal sum sets

    Let us consider sets of positive integers less than or equal to n. Note that all elements of a set a ...

  4. python发送post和get请求

    python发送post和get请求 get请求: 使用get方式时,请求数据直接放在url中. 方法一. import urllib import urllib2 url = "http: ...

  5. python 在 eclipse 上的编码配置问题

    Eclipse的设置 window->preferences->general->editors->text editors->spelling->encoding ...

  6. cpp check 分析

    1 FileTabCharacterCheck 为什么检查: 因为对于一个TAB而言,所空的空格不定是固定的,如果在机器A上设置了是4个空格,显示正常,而在机器B上阅读,B机器是100个空格为一个TA ...

  7. 被忽视的TWaver功能(1)

    应客户需求写个Demo,Demo中包括一些经常使用的功能.包括解析JSON数据生成TWaver中的网元和连线.网元右下角带上不同标识的小图标,连线须要是二次曲线.弹出菜单和信息板.跟大家分享下.先上图 ...

  8. oracle 表连接 - hash join 哈希连接

    一. hash 连接(哈希连接)原理 指的是两个表连接时, 先利用两表中记录较少的表在内存中建立 hash 表, 然后扫描记录较多的表并探測 hash 表, 找出与 hash 表相匹配的行来得到结果集 ...

  9. OCA读书笔记(7) - 管理数据库存储结构

    7.Managing Database Storage Structures 逻辑结构 数据库的存储结构有物理结构和逻辑结构组成的 物理结构:物理上,oracle是由一些操作系统文件组成的 SQL&g ...

  10. Tokyo Tyrant(TTServer)系列(四)-tcrmgr远程管理与调试

    Tokyo Tyrant(TTServer)系列-tcrmgr(远程管理与调试) tcrmgr是TokyoTyrant的管理工具,对ttserver进行管理与执行命令: 通过输入tcrmgr回车,能够 ...