RDD

优点:

  1. 编译时类型安全
    编译时就能检查出类型错误
  2. 面向对象的编程风格
    直接通过类名点的方式来操作数据

缺点:

  1. 序列化和反序列化的性能开销
    无论是集群间的通信, 还是IO操作都需要对对象的结构和数据进行序列化和反序列化.
  2. GC的性能开销
    频繁的创建和销毁对象, 势必会增加GC
import org.apache.spark.sql.SQLContext
import org.apache.spark.{SparkConf, SparkContext} object Run {
def main(args: Array[String]) {
val conf = new SparkConf().setAppName("test").setMaster("local")
val sc = new SparkContext(conf)
sc.setLogLevel("WARN")
val sqlContext = new SQLContext(sc) /**
* id age
* 1 30
* 2 29
* 3 21
*/
case class Person(id: Int, age: Int)
val idAgeRDDPerson = sc.parallelize(Array(Person(1, 30), Person(2, 29), Person(3, 21))) // 优点1
// idAge.filter(_.age > "") // 编译时报错, int不能跟String比 // 优点2
idAgeRDDPerson.filter(_.age > 25) // 直接操作一个个的person对象
}
}

DataFrame

DataFrame引入了schema和off-heap

  • schema : RDD每一行的数据, 结构都是一样的. 这个结构就存储在schema中. Spark通过schame就能够读懂数据, 因此在通信和IO时就只需要序列化和反序列化数据, 而结构的部分就可以省略了.

  • off-heap : 意味着JVM堆以外的内存, 这些内存直接受操作系统管理(而不是JVM)。Spark能够以二进制的形式序列化数据(不包括结构)到off-heap中, 当要操作数据时, 就直接操作off-heap内存. 由于Spark理解schema, 所以知道该如何操作.

off-heap就像地盘, schema就像地图, Spark有地图又有自己地盘了, 就可以自己说了算了, 不再受JVM的限制, 也就不再收GC的困扰了.

通过schema和off-heap, DataFrame解决了RDD的缺点, 但是却丢了RDD的优点. DataFrame不是类型安全的, API也不是面向对象风格的.

import org.apache.spark.sql.types.{DataTypes, StructField, StructType}
import org.apache.spark.sql.{Row, SQLContext}
import org.apache.spark.{SparkConf, SparkContext} object Run {
def main(args: Array[String]) {
val conf = new SparkConf().setAppName("test").setMaster("local")
val sc = new SparkContext(conf)
sc.setLogLevel("WARN")
val sqlContext = new SQLContext(sc)
/**
* id age
* 1 30
* 2 29
* 3 21
*/
val idAgeRDDRow = sc.parallelize(Array(Row(1, 30), Row(2, 29), Row(4, 21))) val schema = StructType(Array(StructField("id", DataTypes.IntegerType), StructField("age", DataTypes.IntegerType))) val idAgeDF = sqlContext.createDataFrame(idAgeRDDRow, schema)
// API不是面向对象的
idAgeDF.filter(idAgeDF.col("age") > 25)
// 不会报错, DataFrame不是编译时类型安全的
idAgeDF.filter(idAgeDF.col("age") > "")
}
}

DataSet

DataSet结合了RDD和DataFrame的优点, 并带来的一个新的概念Encoder

当序列化数据时, Encoder产生字节码与off-heap进行交互, 能够达到按需访问数据的效果, 而不用反序列化整个对象. Spark还没有提供自定义Encoder的API, 但是未来会加入.

下面看DataFrame和DataSet在2.0.0-preview中的实现

下面这段代码, 在1.6.x中创建的是DataFrame

// 上文DataFrame示例中提取出来的
val idAgeRDDRow = sc.parallelize(Array(Row(1, 30), Row(2, 29), Row(4, 21))) val schema = StructType(Array(StructField("id", DataTypes.IntegerType), StructField("age", DataTypes.IntegerType))) val idAgeDF = sqlContext.createDataFrame(idAgeRDDRow, schema)

但是同样的代码在2.0.0-preview中, 创建的虽然还叫DataFrame

// sqlContext.createDataFrame(idAgeRDDRow, schema) 方法的实现, 返回值依然是DataFrame
def createDataFrame(rowRDD: RDD[Row], schema: StructType): DataFrame = {
sparkSession.createDataFrame(rowRDD, schema)
}

但是其实却是DataSet, 因为DataFrame被声明为Dataset[Row]

package object sql {
// ...省略了不相关的代码 type DataFrame = Dataset[Row]
}

因此当我们从1.6.x迁移到2.0.0的时候, 无需任何修改就直接用上了DataSet.

下面是一段DataSet的示例代码

import org.apache.spark.sql.types.{DataTypes, StructField, StructType}
import org.apache.spark.sql.{Row, SQLContext}
import org.apache.spark.{SparkConf, SparkContext} object Test {
def main(args: Array[String]) {
val conf = new SparkConf().setAppName("test").setMaster("local") // 调试的时候一定不要用local[*]
val sc = new SparkContext(conf)
val sqlContext = new SQLContext(sc)
import sqlContext.implicits._ val idAgeRDDRow = sc.parallelize(Array(Row(1, 30), Row(2, 29), Row(4, 21))) val schema = StructType(Array(StructField("id", DataTypes.IntegerType), StructField("age", DataTypes.IntegerType))) // 在2.0.0-preview中这行代码创建出的DataFrame, 其实是DataSet[Row]
val idAgeDS = sqlContext.createDataFrame(idAgeRDDRow, schema) // 在2.0.0-preview中, 还不支持自定的Encoder, Row类型不行, 自定义的bean也不行
// 官方文档也有写通过bean创建Dataset的例子,但是我运行时并不能成功
// 所以目前需要用创建DataFrame的方法, 来创建DataSet[Row]
// sqlContext.createDataset(idAgeRDDRow) // 目前支持String, Integer, Long等类型直接创建Dataset
Seq(1, 2, 3).toDS().show()
sqlContext.createDataset(sc.parallelize(Array(1, 2, 3))).show()
}
}

参考

Introducing Apache Spark Datasets
APACHE SPARK: RDD, DATAFRAME OR DATASET?
RDD、DataFrame和DataSet的区别
Spark 2.0.0-preview 官方文档

Spark-RDD/DataFrame/DateSet的更多相关文章

  1. Spark RDD、DataFrame和DataSet的区别

    版权声明:本文为博主原创文章,未经博主允许不得转载.   目录(?)[+]   转载请标明出处:小帆的帆的专栏 RDD 优点: 编译时类型安全 编译时就能检查出类型错误 面向对象的编程风格 直接通过类 ...

  2. [Spark][Python][RDD][DataFrame]从 RDD 构造 DataFrame 例子

    [Spark][Python][RDD][DataFrame]从 RDD 构造 DataFrame 例子 from pyspark.sql.types import * schema = Struct ...

  3. [Spark][Python][DataFrame][RDD]DataFrame中抽取RDD例子

    [Spark][Python][DataFrame][RDD]DataFrame中抽取RDD例子 sqlContext = HiveContext(sc) peopleDF = sqlContext. ...

  4. [Spark][Python][DataFrame][RDD]从DataFrame得到RDD的例子

    [Spark][Python][DataFrame][RDD]从DataFrame得到RDD的例子 $ hdfs dfs -cat people.json {"name":&quo ...

  5. Spark RDD、DataFrame原理及操作详解

    RDD是什么? RDD (resilientdistributed dataset),指的是一个只读的,可分区的分布式数据集,这个数据集的全部或部分可以缓存在内存中,在多次计算间重用. RDD内部可以 ...

  6. spark RDD、DataFrame、DataSet之间的相互转化

    这三个数据集看似经常用,但是真正归纳总结的时候,很容易说不出来 三个之间的关系与区别参考我的另一篇blog  http://www.cnblogs.com/xjh713/p/7309507.html ...

  7. SparkSQL /DataFrame /Spark RDD谁快?

    如题所示,SparkSQL /DataFrame /Spark RDD谁快? 按照官方宣传以及大部分人的理解,SparkSQL和DataFrame虽然基于RDD,但是由于对RDD做了优化,所以性能会优 ...

  8. value toDF is not a member of org.apache.spark.rdd.RDD

    idea显示toDF() 没有这个函数,显示错误: Error:(82, 8) value toDF is not a member of org.apache.spark.rdd.RDD[com.d ...

  9. pandas和spark的dataframe互转

    pandas的dataframe转spark的dataframe from pyspark.sql import SparkSession # 初始化spark会话 spark = SparkSess ...

随机推荐

  1. WinXP 无线技巧“区域没有通过无线网络中的发现”一个可能的原因!

    貌似WinXP经典或无限.我一直沿用至今,我不知道这一天会放弃. 遇到的问题,也许有XP爱好者都遇到过还得看,写下一点文字注释.----------------------- 切割线 -------- ...

  2. postal邮件发送(二):Email headers,附件,图片介绍

    接上篇 http://www.cnblogs.com/mybky/p/5690567.html 1.邮件headers 除此之外,还有Reply-To,用于回复邮箱 2.邮件带有图片 邮件发送图片,p ...

  3. vs2010下载链接中国简体(中国含msdn)

    昨天一个朋友说vs2010中国版可下载,我开始不相信.只是周末.所以,我下载一试 果然,安装了中国版,原本msdn订户才能够下载,感谢朋友们上传. 文件名 cn_visual_studio_2010_ ...

  4. String.Join的实现

    String.Join的实现 在开发中,有时候会遇到需要把一个List对象中的某个字段用一个分隔符拼成一个字符串的情况.比如在SQL语句的in条件中,我们通常需要把List<int>这样的 ...

  5. Ubuntu下LaTex中文环境安装与配置

    转载自:http://www.linuxidc.com/Linux/2012-06/62456.htm LaTeX是一个强大的排版软件,但是其最初只是为英文排版而设计的.为了使其能够胜任中文排版的重任 ...

  6. JSP技术模型(五)JSP隐含变量

    在JSP页面的转换阶段,容器在_jspService()方法中申明并初始化一些变量,可以在JSP页面小脚本中或表达式中直接使用这些变量. 一.JSP页面中可使用的隐含变量 1.applicationj ...

  7. C#有意思的算法题

    年底了,特贡献一些C#有意思的算法题   2013年,即将要过去了.屌丝C#程序员们拿到了年终奖不?是不是又想蠢蠢欲动了?是不是想通过跳槽来为自己实现加薪的梦想?好吧,跳槽之前还是做点准备吧,准备好C ...

  8. MD5算法-爬虫学习(五)

    在实现爬虫的时候,我们使用Hash结构去存储我们用过的URL的时候,有些URL可能长度很长,为了更加节省空间,我们就要对URL进行压缩,帮它减减肥,这个我们介绍这个MD5算法,可以对URL进行有效的压 ...

  9. 流媒体:V4L2视频获取

    从深圳回来已经20多天了,除了完善毕业设计程序和论文,其他时间都去玩游戏了.真的是最后的一段时间能够无忧无虑在校园里挥霍自己的青春了.今天完成的答辩,比想象的要简单,一直以来想把我现在的这个流媒体的东 ...

  10. 细节MARK

    在刷vijos1046的时候遇到了一些细节,MARK一下 1.哲学之前有告诫我说,输出long long的数的时候,最好用cout,不然容易出现编译器的问题,今天算是领教了 2.对于数组赋值问题 me ...