acm课程练习2--1003
题目描述
My birthday is coming up and traditionally I’m serving pie. Not just one pie, no, I have a number N of them, of various tastes and of various sizes. F of my friends are coming to my party and each of them gets a piece of pie. This should be one piece of one pie, not several small pieces since that looks messy. This piece can be one whole pie though.
My friends are very annoying and if one of them gets a bigger piece than the others, they start complaining. Therefore all of them should get equally sized (but not necessarily equally shaped) pieces, even if this leads to some pie getting spoiled (which is better than spoiling the party). Of course, I want a piece of pie for myself too, and that piece should also be of the same size.
What is the largest possible piece size all of us can get? All the pies are cylindrical in shape and they all have the same height 1, but the radii of the pies can be different.
Input
One line with a positive integer: the number of test cases. Then for each test case:
—One line with two integers N and F with 1 <= N, F <= 10 000: the number of pies and the number of friends.
—One line with N integers ri with 1 <= ri <= 10 000: the radii of the pies.
Output
For each test case, output one line with the largest possible volume V such that me and my friends can all get a pie piece of size V. The answer should be given as a floating point number with an absolute error of at most 10^(-3).
Sample Input
3
3 3
4 3 3
1 24
5
10 5
1 4 2 3 4 5 6 5 4 2
Sample Output
25.1327
3.1416
50.2655
题目大意
有F+1个人分N块蛋糕,每人只能分一块,且每人分到的大小必须相等
思路
随着分的蛋糕面积的增大,能分成的块数递减(注意,这不是一个线性的函数关系,因为蛋糕不能重新组合,所以会出现一块蛋糕切出相同面积的几块后,由于剩余面积不及前几块大,只能舍弃剩余面积的情况。这也是为什么不能简单地用总面积除以人数的原因)
由于有以上的逆序递减关系,因此可以用二分法来找出解。
这是一道二分法的水题。
AC代码
#include<iostream>
#include<cmath>
#include<iomanip>
#include<stdio.h>
#define max(a,b) (((a)>(b))?(a):(b))
using namespace std;
const double pi=acos(-1.0);
int main(){
//freopen("date.in","r",stdin);
//freopen("date.out","w",stdout);
int N,T,renshu,tem1,sum;
cin>>T;
double maxMian,tem2,low,up;
double mianji[10001];
while(T--){
up=0;
cin>>N>>renshu;
renshu++;
for(int i=0;i<N;i++){
cin>>tem1;
mianji[i]=pi*tem1*tem1;
up=max(mianji[i],up);
}
low=0;
sum=0;
while(up-low>1e-6){
sum=0;
tem2=(up+low)/2;
for(int j=0;j<N;j++){
sum+=((int)(mianji[j]/tem2));
}
if(sum>=renshu) low=tem2;
else up=tem2;
}
cout<<fixed<<setprecision(4)<<tem2<<endl;
}
}
acm课程练习2--1003的更多相关文章
- ACM课程学习总结
ACM课程学习总结报告 通过一个学期的ACM课程的学习,我学习了到了许多算法方面的知识,感受到了算法知识的精彩与博大,以及算法在解决问题时的巨大作用.此篇ACM课程学习总结报告将从以下方面展开: 学习 ...
- ACM课程总结
当我还是一个被P哥哥忽悠来的无知少年时,以为编程只有C语言那么点东西,半个学期学完C语言的我以为天下无敌了,谁知自从有了杭电练习题之后,才发现自己简直就是渣渣--咳咳进入正题: STL篇: 成长为一名 ...
- 华东交通大学2016年ACM“双基”程序设计竞赛 1003
Problem Description 风雨漂泊异乡路, 浮萍凄清落叶飞. 游子寻根满愁绪,一朝故土热泪归.Hey ecjtuer! 刚刚学习了二叉树的知识,现在来考察一下..给你一个深度为h的满二叉 ...
- acm课程练习2--1013(同1014)
题目描述 There is a strange lift.The lift can stop can at every floor as you want, and there is a number ...
- acm课程练习2--1005
题目描述 Mr. West bought a new car! So he is travelling around the city.One day he comes to a vertical c ...
- acm课程练习2--1002
题目描述 Now, here is a fuction: F(x) = 6 * x^7+8x^6+7x^3+5x^2-yx (0 <= x <=100)Can you find the ...
- acm课程练习2--1001
题目描述 Now,given the equation 8x^4 + 7x^3 + 2x^2 + 3x + 6 == Y,can you find its solution between 0 and ...
- 华东交通大学2015年ACM“双基”程序设计竞赛1003
Problem C Time Limit : 3000/1000ms (Java/Other) Memory Limit : 65535/32768K (Java/Other) Total Sub ...
- 华东交通大学2017年ACM“双基”程序设计竞赛 1003
Problem Description 有两个球在长度为L的直线跑道上运动,两端为墙.0时刻小球a以1m/s的速度从起点向终点运动,t时刻小球b以相同的速度从终点向起点运动.问T时刻两球的距离.这里小 ...
随机推荐
- poj 1142 Smith Numbers
Description While skimming his phone directory in 1982, Albert Wilansky, a mathematician of Lehigh U ...
- CSS 背景 background 讲解
背景语法:background: background-color || background-image || background-repeat || background-attachment ...
- Tyvj-TOM的无穷序列
背景 蛟川书院模拟试题 描述 TOM有一个无穷序列中如下:110100100010000100000.....请你帮助TOM找出在这个无穷序列中指定位置上的数字 输入格式 第一行一个正整数N,表示询问 ...
- stl 生产全排列 next_permutation
#include<stdio.h>#include<algorithm>using namespace std;int main(){ int n,p[10]; scanf(& ...
- ios中判断当前手机的网络状态
typedef enum { NETWORK_TYPE_NONE= 0, NETWORK_TYPE_2G= 1, NETWORK_TYPE_3G= 2, NETWORK_TYP ...
- html5+css3学习笔记-prefixfree前缀补全插件
虽然现代浏览器支持CSS3,但是一些过往的版本或是目前有些CSS3属性的应用还是离不开前缀的.一些牛逼且执着于web技术且乐于分享的仁兄(Lea Verou)就搞了个名叫prefixfree.js的插 ...
- 转 shell awk 使用详解
awk简介 awk: 中文意思是报告生成器 能够根据我们输入的信息,将信息格式化以后显示,将定义好的信息以比较美观(直观)的方式显示出来出现比较早,继而出现了new awk(nawk)在windows ...
- 元素NULL判断
元素取值val() val()方法主要用来获取form元素的值像input select textarea.在对select取值的时候当没有option被选定时val()会返回null,至少一个opt ...
- css font简写规则
是不是在很很多网站的公共样式中会看到这样的代码?font: 12px/150% Arial, Verdana, "\5b8b\4f53";意思为:字体大小/行高 字体族 " ...
- 基于Centos6.6的R720服务器四网口端口聚合的实践
服务器多网口端口聚合,其目的主要在于网卡容灾和提升带宽.linux端口绑定,提供7种模式,如下: 关于mode共有0-6等7种模式,详细请参考官方手册!mode的值表示工作模式,他共有0,1,2,3, ...