1.有向无环图和拓扑排序

有向无环图(Directed Acyclic Graph,简称DAG);拓扑排序指的对DAG一个有序的线性排列。即每次选出一个没有入度的节点,然后输出该点并将节点和其相关连的弧都删除(此时均为以该节点为弧头的弧),依次进行,直至遍历所有节点,就是一个DAG的拓扑排序,值得一提的是一个图的拓扑排序不一定是唯一的,很有可能有若干个排序。不过这样仍然不太清楚,我们以图来展示。

                                        

                                                     

                                                      

                                                                                                       

上述过程即为一个拓扑排序,首先对于该DAG来说,只有A和E是无入度的节点,任选一个E删除,接着删除相应的弧。【输出E】

同样此时只有A变成无入度节点,做同样的操作。【输出A】

删除A后只有顶点C和G没有前驱,仍然任选一个删除,依此类推,可以得到一个该图的拓扑排序。EAGCFB

2.拓扑排序的实现
前面深搜广搜已经用邻接矩阵实现无向图了,这里我们使用邻接表来表示有向图。先来复习一下邻接表

对于这样的数据结构应该怎么实现呢?如果你第一眼看上去觉得这就是若干个链表组成的,那么恭喜你回答正确,我们一般都是使用链表的思想来实现邻接表的。因此我们首先要在域中定义一个链表的数组:

    private Ljtable [] vertex;

然后定义链表和节点类

    class Ljtable {
char data;
Node head; public Ljtable(char c,int n)
{
data = c;
head = new Node(n);
}
} class Node {
int number;
Node next;
public Node(int a)
{
number = a;
next = null; }
}

拓扑排序,纯本人手写,因为我的代码会使各节点的入度发生变化,因此需要提前存储,拓扑排序后在复原,看起来有点蠢。不过由于都是顺序排列,所以时间复杂度还好。

    public void Topo()
{
int [] m = new int [vertex.length];
for (int i = 0; i < vertex.length; i++)
{
m[i] = vertex[i].inDegree;
} int k = 0;
while(k < vertex.length)
for (Ljtable l:vertex)
{
if(l.inDegree == 0) {
System.out.print(l.data);
k++;
Node h = l.head;
while(h!=null) {
vertex[h.number].inDegree--;
h = h.next;
}
} } for (int i = 0; i < vertex.length; i++)
{
vertex[i].inDegree = m[i];
} }

完整代码请看这里

DAG及拓扑排序的更多相关文章

  1. 大数据工作流任务调度--有向无环图(DAG)之拓扑排序

    点击上方蓝字关注DolphinScheduler(海豚调度) |作者:代立冬 |编辑:闫利帅 回顾基础知识: 图的遍历 图的遍历是指从图中的某一个顶点出发,按照某种搜索方法沿着图中的边对图中的所有顶点 ...

  2. CF-721C DAG图拓扑排序+费用DP

    比赛的时候写了个记忆化搜索,超时了. 后来学习了一下,这种题目应该用拓扑排序+DP来做. dp[][]保存走到[第i个节点][走过j个点]时所用的最短时间. pre[][]用前驱节点求路径 然后遍历一 ...

  3. 拓扑排序(topsort)

    本文将从以下几个方面介绍拓扑排序: 拓扑排序的定义和前置条件 和离散数学中偏序/全序概念的联系 典型实现算法解的唯一性问题 Kahn算法 基于DFS的算法 实际例子 取材自以下材料: http://e ...

  4. [ACM] hdu 1285 确定比赛 (拓扑排序)

    确定比赛 Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (Java/Others) Total Submi ...

  5. 关于最小生成树,拓扑排序、强连通分量、割点、2-SAT的一点笔记

    关于最小生成树,拓扑排序.强连通分量.割点.2-SAT的一点笔记 前言:近期在复习这些东西,就xjb写一点吧.当然以前也写过,但这次偏重不太一样 MST 最小瓶颈路:u到v最大权值最小的路径.在最小生 ...

  6. POJ2762 Going from u to v or from v to u? 强连通分量缩点+拓扑排序

    题目链接:https://vjudge.net/contest/295959#problem/I 或者 http://poj.org/problem?id=2762 题意:输入多组样例,输入n个点和m ...

  7. POJ1094——拓扑排序和它的唯一性

    比较模板的topological-sort题,关键在于每个元素都严格存在唯一的大小关系,而一般的拓扑排序只给出一个可能解,这就需要每趟排序的过程中监视它是不是总坚持一条唯一的路径. 算法导论里面的拓扑 ...

  8. 洛谷P3275 [SCOI2011]糖果(差分约束,最长路,Tarjan,拓扑排序)

    洛谷题目传送门 差分约束模板题,等于双向连0边,小于等于单向连0边,小于单向连1边,我太蒻了,总喜欢正边权跑最长路...... 看遍了讨论版,我是真的不敢再入复杂度有点超级伪的SPFA的坑了 为了保证 ...

  9. 拓扑排序 Topological Sort

    2018-05-02 16:26:07 在计算机科学领域,有向图的拓扑排序或拓扑排序是其顶点的线性排序,使得对于从顶点u到顶点v的每个有向边uv,u在排序中都在v前.例如,图形的顶点可以表示要执行的任 ...

随机推荐

  1. 使用请求包装器RequestWrapper 对博客内容进行编码

    1.写一个文章类 代码如下 package model; public class article { private int id; private String title; private St ...

  2. golang的time包:时间字符串和时间戳的相互转换

    本博客转自: https://blog.csdn.net/mirage003/article/details/86073046 package main import ( "log" ...

  3. gdb调试工具学习

    GDB 是GNU开源组织发布的一个强大的UNIX下的程序调试工具.或许,各位比较喜欢那种图形界面方式的,像VC.BCB等IDE的调试,但如果你是在 UNIX平台下做软件,你会发现GDB这个调试工具有比 ...

  4. 使用dockerfile 搭建django系统(nginx+redis+mongodb+celery)

    背景 有需求需要对django系统进行docker化,以达到灵活部署和容灾.该系统基于django 2.2版本开发,数据库采用mongodb,服务器使用nginx,因系统有部分异步任务,异步任务则采用 ...

  5. Win7 Eclipse 搭建spark java1.8环境:WordCount helloworld例子

    [学习笔记] Win7 Eclipse 搭建spark java1.8环境:WordCount helloworld例子在eclipse oxygen上创建一个普通的java项目,然后把spark-a ...

  6. pandas合并excel文件

    现在有多个excel 文件,需要对其进行合并 import pandas as pd path='' list1=[] #save data data=pd.read_excel(path,dtype ...

  7. Asp.net core 学习笔记 Node Service

    我们知道 npm 是很大的库,很多轮子可以用 所以 .net core 替我们封装了一个调用 nodejs 的 service 就叫 node service 我们只要在 server 安装 node ...

  8. Fiddler 基础

    Fiddler 基础 来源 https://blog.csdn.net/ohmygirl/article/details/17855031 1.为什么是Fiddler? 抓包工具有很多,小到最常用的w ...

  9. Session Timer机制分析

    Session Timer机制分析 功能介绍 会话初始化协议(SIP)并没有为所建立的会话定义存活机制.尽管用户代理可以通过会话特定的机制判断会话是否超时,但是代理服务器却做不到这点.如此一来,代理服 ...

  10. netty 自定义协议

    netty 自定义协议 netty 是什么呢? 相信很多人都被人问过这个问题.如果快速准确的回复这个问题呢?网络编程框架,netty可以让你快速和简单的开发出一个高性能的网络应用.netty是一个网络 ...