Graph is an important data structure and has many important applications. Moreover, grach traversal is key to many graph algorithms. There are two systematic ways to traverse a graph, breadth-first search (BFS) and depth-frist search (DFS).

Before focusing on graph traversal, we first determine how to represent a graph. In fact, there are mainly two ways to represent a graph, either using adjacency lists or adjacency matrix.

An adjacency list is an array of lists. Each list corresponds to a node of the graph and stores the neighbors of that node.

For example, for the (undirected) graph above, its representation using adjacency lists can be:

0: 1 -> 3 -> NULL

1: 0 -> 2 -> NULL

2: 1 -> NULL

3: 0 -> 4 -> 5 -> NULL

4: 3 -> 5 -> 6 -> NULL

5: 3 -> 4 -> 6 -> 7 -> NULL

6: 4 -> 5 -> 7 -> NULL

7: 5 -> 6 -> NULL

An adjacency matrix is a matrix of size m by m (m is the number of nodes in the graph) and the (i, j)-the element of the matrix represents the edge from node i to node j.

For the same graph above, its representation using adjacency matrix is:

0 1 0 1 0 0 0 0

1 0 1 0 0 0 0 0

0 1 0 0 0 0 0 0

1 0 0 0 1 1 0 0

0 0 0 1 0 1 1 0

0 0 0 1 1 0 1 1

0 0 0 0 1 1 0 1

0 0 0 0 0 1 1 0

In this passage, we use adjacency lists to represent a graph. Specifically, we define the node of the graph to be the following structure:

 struct GraphNode {
int label;
vector<GraphNode*> neighbors;
GraphNode(int _label) : label(_label) {}
};

Now let's move on to BFS and DFS.

As suggested by their names, BFS will first visit the current node, then its neighbors, then the non-visited neighbors of its neighbors... and so on in a breadth-first manner while DFS will try to move as far as possible from the current node and backtrack when it cannot move forward any more (all the neighbors of the current node has been visited).

The implementation of BFS requries the use of the queue data structure while the implementation of DFS can be done in a recursive manner.

For more details on BFS and DFS, you may refer to Introduction to Algorithms or these two nice videos: BFS video and DFS video.

In my implementation, BFS starts from a single node and visits all the nodes reachable from it and returns a sequence of visited nodes. However, DFS will try to start from every non-visited node in the graph and starts from that node and obtains a sequence of visited nodes for each starting node. Consequently, the function bfs returns a vector<GraphNode*> while the function dfs returns a vector<vector<GraphNode*> >.

I also implement a function read_graph to input the graph manually. For the above graph, you first need to input its number of nodes and number of edges. Then you will input each of its edge in the form of "0 1" (edge from node 0 to node 1).

The final code is as follows.

 #include <iostream>
#include <vector>
#include <queue>
#include <unordered_set> using namespace std; struct GraphNode {
int label;
vector<GraphNode*> neighbors;
GraphNode(int _label) : label(_label) {}
}; vector<GraphNode*> read_graph(void) {
int num_nodes, num_edges;
scanf("%d %d", &num_nodes, &num_edges);
vector<GraphNode*> graph(num_nodes);
for (int i = ; i < num_nodes; i++)
graph[i] = new GraphNode(i);
int node, neigh;
for (int i = ; i < num_edges; i++) {
scanf("%d %d", &node, &neigh);
graph[node] -> neighbors.push_back(graph[neigh]);
graph[neigh] -> neighbors.push_back(graph[node]);
}
return graph;
} vector<GraphNode*> bfs(vector<GraphNode*>& graph, GraphNode* start) {
vector<GraphNode*> nodes;
queue<GraphNode*> toVisit;
unordered_set<GraphNode*> visited;
toVisit.push(start);
visited.insert(start);
while (!toVisit.empty()) {
GraphNode* cur = toVisit.front();
toVisit.pop();
nodes.push_back(cur);
for (GraphNode* neigh : cur -> neighbors) {
if (visited.find(neigh) == visited.end()) {
toVisit.push(neigh);
visited.insert(neigh);
}
}
}
return nodes;
} bool visitAllNeighbors(GraphNode* node, unordered_set<GraphNode*>& visited) {
for (GraphNode* n : node -> neighbors)
if (visited.find(n) == visited.end())
return false;
return true;
} void dfs_visit(vector<GraphNode*>& graph, GraphNode* node, \
unordered_set<GraphNode*>& visited, vector<GraphNode*>& tree, \
vector<vector<GraphNode*> >& forest) {
visited.insert(node);
tree.push_back(node);
if (visitAllNeighbors(node, visited)) {
forest.push_back(tree);
tree.clear();
return;
}
for (GraphNode* neigh : node -> neighbors)
if (visited.find(neigh) == visited.end())
dfs_visit(graph, neigh, visited, tree, forest);
} vector<vector<GraphNode*> > dfs(vector<GraphNode*>& graph) {
vector<GraphNode*> tree;
vector<vector<GraphNode*> > forest;
unordered_set<GraphNode*> visited;
for (GraphNode* node : graph)
if (visited.find(node) == visited.end())
dfs_visit(graph, node, visited, tree, forest);
return forest;
} void graph_test(void) {
vector<GraphNode*> graph = read_graph();
// BFS
printf("BFS:\n");
vector<GraphNode*> nodes = bfs(graph, graph[]);
for (GraphNode* node : nodes)
printf("%d ", node -> label);
printf("\n");
// DFS
printf("DFS:\n");
vector<vector<GraphNode*> > forest = dfs(graph);
for (vector<GraphNode*> tree : forest) {
for (GraphNode* node : tree)
printf("%d ", node -> label);
printf("\n");
}
} int main(void) {
graph_test();
system("pause");
return ;
}

If you input the above graph to it as follows (note that you only need to input each edge exactly once):


The output will be as follows:

 BFS:

 DFS:

You may check it manually and convince yourself of its correctness :)

[Algorithms] Graph Traversal (BFS and DFS)的更多相关文章

  1. Clone Graph leetcode java(DFS and BFS 基础)

    题目: Clone an undirected graph. Each node in the graph contains a label and a list of its neighbors. ...

  2. [LeetCode] 785. Is Graph Bipartite?_Medium tag: DFS, BFS

    Given an undirected graph, return true if and only if it is bipartite. Recall that a graph is bipart ...

  3. BFS 、DFS 解决迷宫入门问题

    问题 B: 逃离迷宫二 时间限制: 1 Sec  内存限制: 128 MB提交: 12  解决: 5[提交][状态][讨论版] 题目描述 王子深爱着公主.但是一天,公主被妖怪抓走了,并且被关到了迷宫. ...

  4. BFS和DFS详解

    BFS和DFS详解以及java实现 前言 图在算法世界中的重要地位是不言而喻的,曾经看到一篇Google的工程师写的一篇<Get that job at Google!>文章中说到面试官问 ...

  5. 【数据结构与算法】自己动手实现图的BFS和DFS(附完整源码)

    转载请注明出处:http://blog.csdn.net/ns_code/article/details/19617187 图的存储结构 本文的重点在于图的深度优先搜索(DFS)和广度优先搜索(BFS ...

  6. BFS与DFS常考算法整理

    BFS与DFS常考算法整理 Preface BFS(Breath-First Search,广度优先搜索)与DFS(Depth-First Search,深度优先搜索)是两种针对树与图数据结构的遍历或 ...

  7. HDU-4607 Park Visit bfs | DP | dfs

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4607 首先考虑找一条最长链长度k,如果m<=k+1,那么答案就是m.如果m>k+1,那么最 ...

  8. 算法录 之 BFS和DFS

    说一下BFS和DFS,这是个比较重要的概念,是很多很多算法的基础. 不过在说这个之前需要先说一下图和树,当然这里的图不是自拍的图片了,树也不是能结苹果的树了.这里要说的是图论和数学里面的概念. 以上概 ...

  9. hdu--1026--Ignatius and the Princess I(bfs搜索+dfs(打印路径))

    Ignatius and the Princess I Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (J ...

随机推荐

  1. Linux操作系统--help、man和info工具的区别介绍

    http://wenda.tianya.cn/wenda/thread?tid=1d4b0f172f958833Linux操作系统--help.man和info工具的区别介绍 Linux操作系统为我们 ...

  2. Js日常笔记之数组

    1.Array构造函数有一个很大的问题,就是不同的参数,会导致它的行为不一致,es6好像专门为此对数组有升级 因此,不建议使用new Array生成新数组,直接使用数组字面量[...]是更好的做法. ...

  3. HTTPSConnectionPool(host='xxxxx', port=443): Max retries exceeded with url:xxxxxxxx (Caused by NewConnectionError('<urllib3.connect,Max retries exceeded with ,(Caused by NewConnectionError

    HTTPSConnectionPool(host='f6ws-sha8re-o88k.s3.ama66zaws.com', port=443): Max retries exceeded with u ...

  4. [svc]几种访问google方案

    最近老被人问起,有什么访问谷歌的方法可以推荐. 针对小白用户(使用sass式即可) iass sass pass区别 小白可以用(无需安装软件,些许收费):googlegae: https://m.2 ...

  5. 简述 Python 类中的 __init__、__new__、__call__ 方法

    任何事物都有一个从创建,被使用,再到消亡的过程,在程序语言面向对象编程模型中,对象也有相似的命运:创建.初始化.使用.垃圾回收,不同的阶段由不同的方法(角色)负责执行. 定义一个类时,大家用得最多的就 ...

  6. 关于.pyc文件

    Python会在执行.py文件的时候,将.py形式的程序编译成中间式文件(byte-compiled)的.pyc文件,这么做的目的就是为了加快下次执行文件的速度. 所以,在我们运行python文件的时 ...

  7. weex-iOS集成

    weex-iOS集成 weex只是刚刚起步,还存在一些bug,有些功能还有待完善和提高.但是其使用起来还是可以节省些时间. 这里我们说说如何把weex集成到我们的iOS项目中 1. 下载weex源代码 ...

  8. Action方法调用

    一.Action访问路径 Action的访问路径是由struts.xml文件中配置的Action所在包的命名空间,Action的名字和常struts.action.extension共同决定的 例如: ...

  9. root权限NPM全局安装(-g)仍会权限不够,认识下参数 --unsafe-perm

    环境说明 ganiks@ganiks-ubuntu-trusty-64:/ganiks/parse-server$ npm -v 6.5.0 ganiks@ganiks-ubuntu-trusty-6 ...

  10. shell常用的判断条件

    .判断文件夹是否存在 if [ -d /home/q/www ];then echo "true"; else echo "false" ;fi (系统内存在文 ...