Graph is an important data structure and has many important applications. Moreover, grach traversal is key to many graph algorithms. There are two systematic ways to traverse a graph, breadth-first search (BFS) and depth-frist search (DFS).

Before focusing on graph traversal, we first determine how to represent a graph. In fact, there are mainly two ways to represent a graph, either using adjacency lists or adjacency matrix.

An adjacency list is an array of lists. Each list corresponds to a node of the graph and stores the neighbors of that node.

For example, for the (undirected) graph above, its representation using adjacency lists can be:

0: 1 -> 3 -> NULL

1: 0 -> 2 -> NULL

2: 1 -> NULL

3: 0 -> 4 -> 5 -> NULL

4: 3 -> 5 -> 6 -> NULL

5: 3 -> 4 -> 6 -> 7 -> NULL

6: 4 -> 5 -> 7 -> NULL

7: 5 -> 6 -> NULL

An adjacency matrix is a matrix of size m by m (m is the number of nodes in the graph) and the (i, j)-the element of the matrix represents the edge from node i to node j.

For the same graph above, its representation using adjacency matrix is:

0 1 0 1 0 0 0 0

1 0 1 0 0 0 0 0

0 1 0 0 0 0 0 0

1 0 0 0 1 1 0 0

0 0 0 1 0 1 1 0

0 0 0 1 1 0 1 1

0 0 0 0 1 1 0 1

0 0 0 0 0 1 1 0

In this passage, we use adjacency lists to represent a graph. Specifically, we define the node of the graph to be the following structure:

 struct GraphNode {
int label;
vector<GraphNode*> neighbors;
GraphNode(int _label) : label(_label) {}
};

Now let's move on to BFS and DFS.

As suggested by their names, BFS will first visit the current node, then its neighbors, then the non-visited neighbors of its neighbors... and so on in a breadth-first manner while DFS will try to move as far as possible from the current node and backtrack when it cannot move forward any more (all the neighbors of the current node has been visited).

The implementation of BFS requries the use of the queue data structure while the implementation of DFS can be done in a recursive manner.

For more details on BFS and DFS, you may refer to Introduction to Algorithms or these two nice videos: BFS video and DFS video.

In my implementation, BFS starts from a single node and visits all the nodes reachable from it and returns a sequence of visited nodes. However, DFS will try to start from every non-visited node in the graph and starts from that node and obtains a sequence of visited nodes for each starting node. Consequently, the function bfs returns a vector<GraphNode*> while the function dfs returns a vector<vector<GraphNode*> >.

I also implement a function read_graph to input the graph manually. For the above graph, you first need to input its number of nodes and number of edges. Then you will input each of its edge in the form of "0 1" (edge from node 0 to node 1).

The final code is as follows.

 #include <iostream>
#include <vector>
#include <queue>
#include <unordered_set> using namespace std; struct GraphNode {
int label;
vector<GraphNode*> neighbors;
GraphNode(int _label) : label(_label) {}
}; vector<GraphNode*> read_graph(void) {
int num_nodes, num_edges;
scanf("%d %d", &num_nodes, &num_edges);
vector<GraphNode*> graph(num_nodes);
for (int i = ; i < num_nodes; i++)
graph[i] = new GraphNode(i);
int node, neigh;
for (int i = ; i < num_edges; i++) {
scanf("%d %d", &node, &neigh);
graph[node] -> neighbors.push_back(graph[neigh]);
graph[neigh] -> neighbors.push_back(graph[node]);
}
return graph;
} vector<GraphNode*> bfs(vector<GraphNode*>& graph, GraphNode* start) {
vector<GraphNode*> nodes;
queue<GraphNode*> toVisit;
unordered_set<GraphNode*> visited;
toVisit.push(start);
visited.insert(start);
while (!toVisit.empty()) {
GraphNode* cur = toVisit.front();
toVisit.pop();
nodes.push_back(cur);
for (GraphNode* neigh : cur -> neighbors) {
if (visited.find(neigh) == visited.end()) {
toVisit.push(neigh);
visited.insert(neigh);
}
}
}
return nodes;
} bool visitAllNeighbors(GraphNode* node, unordered_set<GraphNode*>& visited) {
for (GraphNode* n : node -> neighbors)
if (visited.find(n) == visited.end())
return false;
return true;
} void dfs_visit(vector<GraphNode*>& graph, GraphNode* node, \
unordered_set<GraphNode*>& visited, vector<GraphNode*>& tree, \
vector<vector<GraphNode*> >& forest) {
visited.insert(node);
tree.push_back(node);
if (visitAllNeighbors(node, visited)) {
forest.push_back(tree);
tree.clear();
return;
}
for (GraphNode* neigh : node -> neighbors)
if (visited.find(neigh) == visited.end())
dfs_visit(graph, neigh, visited, tree, forest);
} vector<vector<GraphNode*> > dfs(vector<GraphNode*>& graph) {
vector<GraphNode*> tree;
vector<vector<GraphNode*> > forest;
unordered_set<GraphNode*> visited;
for (GraphNode* node : graph)
if (visited.find(node) == visited.end())
dfs_visit(graph, node, visited, tree, forest);
return forest;
} void graph_test(void) {
vector<GraphNode*> graph = read_graph();
// BFS
printf("BFS:\n");
vector<GraphNode*> nodes = bfs(graph, graph[]);
for (GraphNode* node : nodes)
printf("%d ", node -> label);
printf("\n");
// DFS
printf("DFS:\n");
vector<vector<GraphNode*> > forest = dfs(graph);
for (vector<GraphNode*> tree : forest) {
for (GraphNode* node : tree)
printf("%d ", node -> label);
printf("\n");
}
} int main(void) {
graph_test();
system("pause");
return ;
}

If you input the above graph to it as follows (note that you only need to input each edge exactly once):


The output will be as follows:

 BFS:

 DFS:

You may check it manually and convince yourself of its correctness :)

[Algorithms] Graph Traversal (BFS and DFS)的更多相关文章

  1. Clone Graph leetcode java(DFS and BFS 基础)

    题目: Clone an undirected graph. Each node in the graph contains a label and a list of its neighbors. ...

  2. [LeetCode] 785. Is Graph Bipartite?_Medium tag: DFS, BFS

    Given an undirected graph, return true if and only if it is bipartite. Recall that a graph is bipart ...

  3. BFS 、DFS 解决迷宫入门问题

    问题 B: 逃离迷宫二 时间限制: 1 Sec  内存限制: 128 MB提交: 12  解决: 5[提交][状态][讨论版] 题目描述 王子深爱着公主.但是一天,公主被妖怪抓走了,并且被关到了迷宫. ...

  4. BFS和DFS详解

    BFS和DFS详解以及java实现 前言 图在算法世界中的重要地位是不言而喻的,曾经看到一篇Google的工程师写的一篇<Get that job at Google!>文章中说到面试官问 ...

  5. 【数据结构与算法】自己动手实现图的BFS和DFS(附完整源码)

    转载请注明出处:http://blog.csdn.net/ns_code/article/details/19617187 图的存储结构 本文的重点在于图的深度优先搜索(DFS)和广度优先搜索(BFS ...

  6. BFS与DFS常考算法整理

    BFS与DFS常考算法整理 Preface BFS(Breath-First Search,广度优先搜索)与DFS(Depth-First Search,深度优先搜索)是两种针对树与图数据结构的遍历或 ...

  7. HDU-4607 Park Visit bfs | DP | dfs

    题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=4607 首先考虑找一条最长链长度k,如果m<=k+1,那么答案就是m.如果m>k+1,那么最 ...

  8. 算法录 之 BFS和DFS

    说一下BFS和DFS,这是个比较重要的概念,是很多很多算法的基础. 不过在说这个之前需要先说一下图和树,当然这里的图不是自拍的图片了,树也不是能结苹果的树了.这里要说的是图论和数学里面的概念. 以上概 ...

  9. hdu--1026--Ignatius and the Princess I(bfs搜索+dfs(打印路径))

    Ignatius and the Princess I Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 65536/32768 K (J ...

随机推荐

  1. Solr 缓存配置

    http://www.blogjava.net/xiaohuzi2008/archive/2012/12/03/392376.html

  2. 征服 Ajax 应用程序的安全威胁

    Ajax 构建于动态 HTML(DHTML)技术之上,其中包括如下这些最常见的技术: JavaScript :JavaScript 是一种脚本语言,在客户端 Web 应用程序中经常使用. 文档对象模型 ...

  3. 在 SELECT 查询中使用集运算符

    在 SELECT 查询中使用集运算符,可以将来自两个或多个查询的结果合并到单个结果集中. 在进行集运算之前,请确保: (1)所有输入集合中,列数和列的顺序必须相同. (2)对应的列中,数据类型必须兼容 ...

  4. python selenium --unittest 框架

    转自:http://www.cnblogs.com/fnng/p/3300788.html 学习unittest 很好的一个切入点就是从selenium IDE 录制导出脚本.相信不少新手学习sele ...

  5. 创建cocos2d-x+lua项目

    1>     创建cocos2d-x+lua项目 进入到cocos2d-x-2.1.5\tools\project-creator文件夹运行下面命令: python create_project ...

  6. STM32的IO口灌入电流和输出驱动电流最大是多少?

    最大可以输出8mA,灌入20mA,但要保证所有进入芯片VDD的电流不能超过150mA,同样所有从VSS流出的电流也不能超过150mA. 详细请看STM32的数据手册中的相关内容. 例如,STM32F1 ...

  7. VS创建、安装、调试 windows服务(windows service)

    1.创建 windows服务 项目   文件 -> 新建项目 -> 已安装的模板 -> Visual C# -> windows ,在右侧窗口选择"windows 服 ...

  8. 批量Linux、Windows管理工具BatchShell 1.2(最新版)

    简介: BatchShell是什么: BatchShell是一款基于SSH2的批量文件传输及命令执行工具,它可以同时传输文件到多台远程服务器以及同时对多台远程服务器执行命令.具备以下主要功能:     ...

  9. 测试-一个unity的编译bug,初始化器

    .net C#下测试: public class Class1 { public bool toggle1 = true; public bool toggle2; } 一个结构类Class1,对里面 ...

  10. FPGA的图像处理技术

    最近一段时间一直在研究基于FPGA的图像处理,乘着EEPW这个机会和大家交流一下,自己也顺便总结一下.主要是为了大家对用FPGA做图像处理有个感性的认识,如果真要研究的话就得更加深入学习了.本人水平有 ...