【以前的空间】bzoj 1052 [HAOI2007]覆盖问题
这道题的思路挺简单的……就是可以证明如果要覆盖一个区域内的点,那么一定有一个正方形在这“区域内的点所围成的最大矩形的四个角中的一个”(不要吐槽很多的“的”……),对于长度r是否可以覆盖整个区域内的点,只需要先枚举第一个矩形在“区域内的点所围成的最大矩形的四个角中的哪一个”,然后再枚举下一个点在“区域内的剩余点所围成的最大矩形的四个角中的哪一个”第三个正方形就直接判断余下的点的最大最小差值是否小于r就行了……再然后就直接二分答案了……然后,注意一种情况,就是出现一个或者两个矩形就可以覆盖完整个区域点的情况(可能是因为我傻×于是就被这里坑了一下)……
type
arr=record
x,y:longint;
end;
var
a:array[..]of arr;
i,j,k,l,r,n,mid,maxx,minx,maxy,miny:longint;
vs:array[..]of longint; procedure find(var x1,x2,y1,y2:longint);
begin
x1:=-maxlongint;
x2:=maxlongint;
y1:=-maxlongint;
y2:=maxlongint;
for i:= to n do if vs[i]= then
begin
if a[i].x>x1 then x1:=a[i].x;
if a[i].x<x2 then x2:=a[i].x;
if a[i].y>y1 then y1:=a[i].y;
if a[i].y<y2 then y2:=a[i].y;
end;
end; function dfs(x,y:longint):boolean;
var
maxx,minx,maxy,miny:longint;
begin
find(maxx,minx,maxy,miny);
if minx=maxlongint then exit(true);
if y= then begin
if (maxx-minx<=x) and (maxy-miny<=x) then exit(true);
exit(false);
end; for i:= to n do
if vs[i]= then
if (minx+x>=a[i].x) and (miny+x>=a[i].y) then vs[i]:=y;
if dfs(x,y+) then exit(true);
for i:= to n do
if vs[i]=y then vs[i]:=; for i:= to n do
if vs[i]= then
if (minx+x>=a[i].x) and (maxy-x<=a[i].y) then vs[i]:=y;
if dfs(x,y+) then exit(true);
for i:= to n do
if vs[i]=y then vs[i]:=; for i:= to n do
if vs[i]= then
if (maxx-x<=a[i].x) and (miny+x>=a[i].y) then vs[i]:=y;
if dfs(x,y+) then exit(true);
for i:= to n do
if vs[i]=y then vs[i]:=; for i:= to n do
if vs[i]= then
if (maxx-x<=a[i].x) and (maxy-x<=a[i].y) then vs[i]:=y;
if dfs(x,y+) then exit(true);
for i:= to n do
if vs[i]=y then vs[i]:=;
exit(false);
end; begin
readln(n);
for i:= to n do
readln(a[i].x,a[i].y);
fillchar(vs,sizeof(vs),);
find(maxx,minx,maxy,miny);
l:=;
if maxx-minx>maxy-miny
then r:=maxx-minx
else r:=maxy-miny;
while l<=r do begin
fillchar(vs,sizeof(vs),);
mid:=(l+r)>>;
if dfs(mid,) then r:=mid-
else l:=mid+;
end;
writeln(l);
readln;
end.
【以前的空间】bzoj 1052 [HAOI2007]覆盖问题的更多相关文章
- BZOJ 1052: [HAOI2007]覆盖问题
BZOJ 1052: [HAOI2007]覆盖问题 题意:给定平面上横纵坐标在-1e9~1e9内的20000个整数点的坐标,用三个大小相同边平行于坐标轴的正方形覆盖(在边界上的也算),问正方形的边长最 ...
- [BZOJ 1052][HAOI2007]覆盖问题(二分答案)
题目:http://www.lydsy.com:808/JudgeOnline/problem.php?id=1052 分析: 挺有想法的一道题,先二分答案ans,主要是判断的问题. 首先可以弄出把所 ...
- BZOJ 1052 HAOI2007 覆盖问题 二分法答案+DFS
标题效果:特定n点.涵盖所有的点与同方三面.斧头要求方垂直边界,最小平方的需求方长值 最大值至少.答案是很明显的二分法 但验证是一个问题 考虑仅仅有三个正方形,故用一个最小矩形覆盖这三个正方形时至少有 ...
- 【BZOJ 1052】 1052: [HAOI2007]覆盖问题 (乱搞)
1052: [HAOI2007]覆盖问题 Description 某人在山上种了N棵小树苗.冬天来了,温度急速下降,小树苗脆弱得不堪一击,于是树主人想用一些塑料薄 膜把这些小树遮盖起来,经过一番长久的 ...
- 【BZOJ】1052: [HAOI2007]覆盖问题
题目链接:http://www.lydsy.com/JudgeOnline/problem.php?id=1052 大概自己YY了个贪心然后过了... 二分答案,考虑如何check: 找到一个最小的矩 ...
- 【BZOJ】1052: [HAOI2007]覆盖问题(贪心)
http://www.lydsy.com/JudgeOnline/problem.php?id=1052 首先膜拜题解orz,表示只能想到二分... 贪心就是每一次找到一个最小的能包围所有点的矩阵,然 ...
- 1052: [HAOI2007]覆盖问题 - BZOJ
Description 某人在山上种了N棵小树苗.冬天来了,温度急速下降,小树苗脆弱得不堪一击,于是树主人想用一些塑料薄膜把这些小树遮盖起来,经过一番长久的思考,他决定用3个L*L的正方形塑料薄膜将小 ...
- [BZOJ1052][HAOI2007]覆盖问题 二分+贪心
1052: [HAOI2007]覆盖问题 Time Limit: 10 Sec Memory Limit: 162 MB Submit: 2053 Solved: 959 [Submit][Sta ...
- 二分判定 覆盖问题 BZOJ 1052
//二分判定 覆盖问题 BZOJ 1052 // 首先确定一个最小矩阵包围所有点,则最优正方形的一个角一定与矩形一个角重合. // 然后枚举每个角,再解决子问题 #include <bits/s ...
随机推荐
- Drupal中自定义登录页面
通过覆写template定义新的user_login表单来为自定义登录页面.方法: 1. 本站使用的主题是Rorty.来到\sites\all\themes\rorty,打开template.php ...
- 抽样分布(3) F分布
定义 设U~χ2(n1), V~χ2(n2),且U,V相互独立,则称随机变量 服从自由度为(n1,n2)的F分布,记为F~F(n1,n2),其中n1叫做第一自由度,n2叫做第二自由度. F分布的概率密 ...
- 抽样分布(2) t分布
定义 t分布 设X ~ N(0,1),Y ~ χ2(n),且X,Y相互独立,则称随机变量 服从自由度为n的t分布(学生氏分布) 记为 t~t(n),其概率密度为 由于tn(x)是偶函数,其图形关于y轴 ...
- mysql表的核心元数据
索引的 mysql> show indexes from recordsInRangeTest; +--------------------+------------+------------- ...
- div布局方案整理
实际项目开发过程中遇到页面 DIV 左右布局的需求:左侧 DIV 固定宽度,右侧 DIV 自适应宽度,填充满剩余页面,由此引申出本文的几种解决方案 1 左侧 DIV 设置 float 属性为 left ...
- 微信小程序之注释出现的问题(.json不能注释)
js的注释一般是双斜杠// 或者是/**/这样的快注释 .json是配置文件,其内容必须符合json格式内部不允许有注释. JSON有两种数据结构: 名称/值对的集合:key : value样式: 值 ...
- metamask注记词
leaf orbit poet zebra toy day put dinosaur review cool pluck throw(m) 一个钱包地址 里面有多个账号 菲苾代表了不同网络
- ServiceStack.Ormlit sqlserver枚举类型映射字段类型为varchar
请当枚举类型上面加上[Flags]特性就可以了.
- maven 教程二 深入
一:编写POM <project xmlns="http://maven.apache.org/POM/4.0.0" xmlns:xsi="http://www.w ...
- HADOOP docker(八):hadoop本地库
前言2. Native Hadoop Library3. 使用本地库4. 本地库组件5. 支持的平台6. 下载7. 编译8. 运行时观察9. 检查本地库10. 如果共享本地库 小伙伴还记得每次启动hd ...