PAT 1049 数列的片段和
https://pintia.cn/problem-sets/994805260223102976/problems/994805275792359424
给定一个正数数列,我们可以从中截取任意的连续的几个数,称为片段。例如,给定数列{0.1, 0.2, 0.3, 0.4},我们有(0.1) (0.1, 0.2) (0.1, 0.2, 0.3) (0.1, 0.2, 0.3, 0.4) (0.2) (0.2, 0.3) (0.2, 0.3, 0.4) (0.3) (0.3, 0.4) (0.4) 这10个片段。
给定正整数数列,求出全部片段包含的所有的数之和。如本例中10个片段总和是0.1
- 0.3 + 0.6 + 1.0 + 0.2 + 0.5 + 0.9 + 0.3 + 0.7 + 0.4 = 5.0。
输入格式:
输入第一行给出一个不超过10^5^的正整数N,表示数列中数的个数,第二行给出N个不超过1.0的正数,是数列中的数,其间以空格分隔。
输出格式:
在一行中输出该序列所有片段包含的数之和,精确到小数点后2位。
输入样例:
4
0.1 0.2 0.3 0.4
输出样例:
5.00
代码:
#include <bits/stdc++.h> using namespace std; const int maxn=1e5+10;
double a[maxn]; int main()
{
int n;
scanf("%d",&n);
double sum=0;
for(int i=1;i<=n;i++)
{
scanf("%lf",&a[i]);
sum+=i*a[i]*(n+1-i);
}
printf("%.2f\n",sum);
return 0;
}
PAT 1049 数列的片段和的更多相关文章
- PAT 1049 数列的片段和(20)(代码+思路分析)
1049 数列的片段和(20)(20 分) 给定一个正数数列,我们可以从中截取任意的连续的几个数,称为片段.例如,给定数列{0.1, 0.2, 0.3, 0.4},我们有(0.1) (0.1, 0.2 ...
- PAT 1049. 数列的片段和(20)
给定一个正数数列,我们可以从中截取任意的连续的几个数,称为片段.例如,给定数列{0.1, 0.2, 0.3, 0.4},我们有(0.1) (0.1, 0.2) (0.1, 0.2, 0.3) (0.1 ...
- PAT——1049. 数列的片段和
给定一个正数数列,我们可以从中截取任意的连续的几个数,称为片段.例如,给定数列{0.1, 0.2, 0.3, 0.4},我们有(0.1) (0.1, 0.2) (0.1, 0.2, 0.3) (0.1 ...
- PAT 乙级 1049 数列的片段和(20) C++版
1049. 数列的片段和(20) 时间限制 200 ms 内存限制 65536 kB 代码长度限制 8000 B 判题程序 Standard 作者 CAO, Peng 给定一个正数数列,我们可以从中截 ...
- PAT(B) 1049 数列的片段和(C)规律
题目链接:1049 数列的片段和 (20 point(s)) 题目描述 给定一个正数数列,我们可以从中截取任意的连续的几个数,称为片段.例如,给定数列 { 0.1, 0.2, 0.3, 0.4 },我 ...
- PAT-乙级-1049. 数列的片段和(20)
1049. 数列的片段和(20) 时间限制 200 ms 内存限制 65536 kB 代码长度限制 8000 B 判题程序 Standard 作者 CAO, Peng 给定一个正数数列,我们可以从中截 ...
- PAT Basic 1049 数列的片段和 (20 分)
给定一个正数数列,我们可以从中截取任意的连续的几个数,称为片段.例如,给定数列 { 0.1, 0.2, 0.3, 0.4 },我们有 (0.1) (0.1, 0.2) (0.1, 0.2, 0.3) ...
- 1049 数列的片段和 (20 分)C语言
给定一个正数数列,我们可以从中截取任意的连续的几个数,称为片段.例如,给定数列 { 0.1, 0.2, 0.3, 0.4 },我们有 (0.1) (0.1, 0.2) (0.1, 0.2, 0.3) ...
- 【算法笔记】B1049 数列的片段和
1049 数列的片段和 (20 分) 给定一个正数数列,我们可以从中截取任意的连续的几个数,称为片段.例如,给定数列 { 0.1, 0.2, 0.3, 0.4 },我们有 (0.1) (0.1, ...
随机推荐
- Luogu P4707 重返现世
题目描述 为了打开返回现世的大门,Yopilla 需要制作开启大门的钥匙.Yopilla 所在的迷失大陆有 \(n\) 种原料,只需要集齐任意 \(k\) 种,就可以开始制作. Yopilla 来到了 ...
- mysql数据类型介绍(含text,longtext,mediumtext说明)
转自http://m.blog.csdn.net/sipsir/article/details/12343581 转载,文章原连接已经失效,百度快照找到的. MySQL支持大量的列类型,它可以被分为3 ...
- easyui的datagrid的列checkbox自定义增加disabled选项
需求根据权限判断datagrid的每一列的checkBox是否可选,看了下文档,发现editor的checkbox应该能实现这个功能,但我们项目自己将easyui外面包了一层,把原生的editor改成 ...
- jQuery的Cookie使用
为程序设置Cookie,可以在C#内进行,也可以在前端进行.如jQuery的Cookie也是一个很不错的插件. 在使用之前,可以先使用NuGet来安装cookie: 在MVC的视图中,引用jQuery ...
- (转) Ubuntu 更改文件夹及子文件夹权限
Linux系统下如何修改文档及文件夹(含子文件夹)权限,我们来看一下. 一 介绍: 可以使用命令chmod来为文件或目录赋予权限.Linux/Unix 的档案存取权限分为三级 : 档案拥有者.群组.其 ...
- 在WPF中使用FontAwesome图标字体
原文:在WPF中使用FontAwesome图标字体 版权声明:原创内容转载必须注明出处,否则追究相关责任. https://blog.csdn.net/qq_36663276/article/deta ...
- WPF loading遮罩层 LoadingMask
原文:WPF loading遮罩层 LoadingMask 大家可能很纠结在异步query数据的时候想在wpf程序中显示一个loading的遮罩吧 今天就为大家介绍下遮罩的制作 源码下载 点击此处 先 ...
- Luogu P4317 花神的数论题
也是一道不错的数位DP,考虑先转成二进制后再做 转化一下问题,考虑统计出\([1,n]\)中在二进制下有\(i\)个\(1\)的方案数\(cnt_i\),那么答案显然就是\(\prod i^{cnt_ ...
- GBDT和随机森林的区别
GBDT和随机森林的相同点: 1.都是由多棵树组成 2.最终的结果都是由多棵树一起决定 GBDT和随机森林的不同点: 1.组成随机森林的树可以是分类树,也可以是回归树:而GBDT只由回归树组成 2.组 ...
- .net core实践系列之短信服务-Sikiro.SMS.Api服务的实现
前言 上篇<.net core实践系列之短信服务-架构设计>介绍了我对短信服务的架构设计,同时针对场景解析了我的设计理念.本篇继续讲解Api服务的实现过程. 源码地址:https://gi ...