关于yaha中文分词(将中文分词后,结合TfidfVectorizer变成向量)
https://github.com/jannson/yaha
# -*- coding: utf-8 -*-
"""
Created on Wed Aug 10 08:35:55 2016 @author: Administrator
""" # -*- coding=utf-8 -*-
import sys, re, codecs
import cProfile
from yaha import Cuttor, RegexCutting, SurnameCutting, SurnameCutting2, SuffixCutting
from yaha.wordmaker import WordDict
from yaha.analyse import extract_keywords, near_duplicate, summarize1, summarize2, summarize3 '''
项目网址
https://github.com/jannson/yaha
''' str = '唐成真是唐成牛的长寿乡是个1998love唐成真诺维斯基'
cuttor = Cuttor() # Get 3 shortest paths for choise_best
#cuttor.set_topk(3) # Use stage 1 to cut english and number
cuttor.set_stage1_regex(re.compile('(\d+)|([a-zA-Z]+)', re.I|re.U)) # Or use stage 2 to cut english and number
#cuttor.add_stage(RegexCutting(re.compile('\d+', re.I|re.U)))
#cuttor.add_stage(RegexCutting(re.compile('[a-zA-Z]+', re.I|re.U))) # Use stage 3 to cut chinese name
#surname = SurnameCutting()
#cuttor.add_stage(surname) # Or use stage 4 to cut chinese name
surname = SurnameCutting2()
cuttor.add_stage(surname) # Use stage 4 to cut chinese address or english name
suffix = SuffixCutting()
cuttor.add_stage(suffix) #seglist = cuttor.cut(str)
#print '\nCut with name \n%s\n' % ','.join(list(seglist)) #seglist = cuttor.cut_topk(str, 3)
#for seg in seglist:
# print ','.join(seg) #for s in cuttor.cut_to_sentence(str):
# print s #str = "伟大祖国是中华人民共和国"
#str = "九孔不好看来"
#str = "而迈入社会后..."
str = "工信处女干事每月经过下属科室都要亲口交代24口交换机等技术性器件的安装工作" #You can set WORD_MAX to 8 for better match
#cuttor.WORD_MAX = 8 #Normal cut()
seglist = cuttor.cut(str)
print 'Normal cut \n%s\n' % ','.join(list(seglist)) #All cut
seglist = cuttor.cut_all(str)
print 'All cut \n%s\n' % ','.join(list(seglist)) #Tokenize for search
print 'Cut for search (term,start,end)'
for term, start, end in cuttor.tokenize(str.decode('utf-8'), search=True):
print term, start, end re_line = re.compile("\W+|[a-zA-Z0-9]+", re.UNICODE)
def sentence_from_file(filename):
with codecs.open(filename, 'r', 'utf-8') as file:
for line in file:
for sentence in re_line.split(line):
yield sentence def make_new_word(file_from, file_save):
word_dict = WordDict()
#word_dict.add_user_dict('www_qq0')
for sentence in sentence_from_file(file_from):
word_dict.learn(sentence)
word_dict.learn_flush() str = '我们的读书会也顺利举办了四期'
seg_list = word_dict.cut(str)
print ', '.join(seg_list) word_dict.save_to_file(file_save) #最大熵算法得到新词
#def test():
# make_new_word('qq0', 'www_qq0')
#cProfile.run('test()')
#test() #test: Get key words from file
def key_word_test():
filename = 'key_test.txt'
with codecs.open(filename, 'r', 'utf-8') as file:
content = file.read()
keys = extract_keywords(content)
#print ','.join(keys)
print summarize1(content)
print summarize2(content)
print summarize3(content)
#key_word_test() #比较文本的相似度(注意将两个文本文件保存为UTF-8)
def compare_file():
file1 = codecs.open('f1.txt', 'r', 'utf-8')
file2 = codecs.open('f2.txt', 'r', 'utf-8')
print 'the near of two files is:', near_duplicate(file1.read(), file2.read())
compare_file()
关于yaha中文分词(将中文分词后,结合TfidfVectorizer变成向量)的更多相关文章
- python中文分词:结巴分词
中文分词是中文文本处理的一个基础性工作,结巴分词利用进行中文分词.其基本实现原理有三点: 基于Trie树结构实现高效的词图扫描,生成句子中汉字所有可能成词情况所构成的有向无环图(DAG) 采用了动态规 ...
- python 中文分词:结巴分词
中文分词是中文文本处理的一个基础性工作,结巴分词利用进行中文分词.其基本实现原理有三点: 基于Trie树结构实现高效的词图扫描,生成句子中汉字所有可能成词情况所构成的有向无环图(DAG) 采用了动态规 ...
- 为Elasticsearch添加中文分词,对比分词器效果
http://keenwon.com/1404.html Elasticsearch中,内置了很多分词器(analyzers),例如standard (标准分词器).english(英文分词)和chi ...
- 为 Elasticsearch 添加中文分词,对比分词器效果
转自:http://keenwon.com/1404.html 为 Elasticsearch 添加中文分词,对比分词器效果 Posted in 后端 By KeenWon On 2014年12月12 ...
- SQLServer乱码问题的分析及解决方法(中文字符被存入数据库后,显示为乱码)
注:本文为个人转存,原文地址:http://blog.csdn.net/qiuyu8888/article/details/8021410 问题:SQL版在使用过程中有时会出现乱码,我的症状是中文字符 ...
- 可定制的分词库——Yaha(哑哈)分词
可定制的分词库——Yaha(哑哈)分词在线测试地址:http://yaha.v-find.com/ 部署于GAE yahademo.appspot.comYaha分词主要特点是把分词过程分成了4个阶段 ...
- 【转】cygwin中文乱码(打开gvim中文乱码、安装svn后乱码)
想用cygwin less看log,可能包含德语.格式是乱的,很多类似"ESC"之类的乱码. 结果这个解决方案似乎也不错,有排版,有颜色高亮. ------------------ ...
- cookie不支持中文,必须转码后存储,否则会乱码
cookie不支持中文,必须转码后存储,否则会乱码 Cookie ck = new Cookie("username", URLEncoder.encode(name, " ...
- ElasticSearch已经配置好ik分词和mmseg分词(转)
ElasticSearch是一个基于Lucene构建的开源,分布式,RESTful搜索引擎.设计用于云计算中,能够达到实时搜索,稳定,可靠,快速,安装使用方便.支持通过HTTP使用JSON进行数据索引 ...
- Elasticsearch拼音分词和IK分词的安装及使用
一.Es插件配置及下载 1.IK分词器的下载安装 关于IK分词器的介绍不再多少,一言以蔽之,IK分词是目前使用非常广泛分词效果比较好的中文分词器.做ES开发的,中文分词十有八九使用的都是IK分词器. ...
随机推荐
- android切换屏幕时的生命周期
老版本总结: 1.不设置Activity的android:configChanges时 切屏会重新调用生命周期的方法,切横屏调用1次 切竖屏调用2次 2.设置Activity的android:conf ...
- Maven项目中的run as选项介绍
maven install:把本项目发布到本地资源库maven package:编译.测试,然后打包项目maven test:执行测试maven clean:把该资源从本地资源库清除.在基于Maven ...
- IP的包头格式什么?请分析每个字段的含义
Version:版本号 Header Length:IP包头长度 Type of service:服务类型 Total Length:IP包总长 Identifier:标识符 Flags:标记 Fra ...
- 转 C# DataTable 和List之间相互转换的方法
一.List/IEnumerable转换到DataTable/DataView 方法一: /// <summary> /// Convert a List{T} to a DataTabl ...
- H5 认识canvas
不同于SVG,HTML中的元素canvas只支持一种原生的图形绘制:矩形.所有其他的图形的绘制都至少需要生成一条路径.不过,我们拥有众多路径生成的方法让复杂图形的绘制成为了可能. canvas提供了三 ...
- springMVC返回json
<mvc:annotation-driven> <mvc:message-converters register-defaults="true"> < ...
- Array函数
array_flip()例子 , , "c" );$trans = array_flip($trans);print_r($trans);?> 答案: Array ( [1] ...
- [java] java解析txt文件
/** * 读取txt文件内容封装为map返回 * @param filePath * @return */ public static String readTxt(String filePath) ...
- android学习笔记56——Service
Service四大组件之一,需要在AndroidMainfest.xml中添加相关配置,运行于后台,不与用户进行交换,没有UI... 配置时可通过<intent-filter.../>元素 ...
- Hadoop学习17--yarn配置篇-内存管理
这篇文章来自于:董的博客,记录备查 内存管理,主要是管理nodemanager上的物理内存和虚拟内存. YARN允许用户配置每个节点上可用的物理内存资源,注意,这里是“可用的”,因为一个节点上的内存会 ...