Holy Grail Bellman-Ford/spfa
Bellman-Ford
#include <bits/stdc++.h>
using namespace std;
const int maxn = , maxm = ;
const int inf = 0x3f3f3f3f;
struct edge {
int v, w;
};
vector<edge> maps[maxn];
int dis[maxn], n, m; bool BellmanFord(int s) { // s为源点
fill(dis, dis+n, inf);
dis[s] = ;
for (int i = ; i < n-; i++) {
for (int u = ; u < n; u++) {
for (int j = ; j < maps[u].size(); j++) {
int v = maps[u][j].v;
int w = maps[u][j].w;
if (dis[u] + w < dis[v]) {
dis[v] = dis[u] + w;
}
}
}
}
for (int u = ; u < n; u++) {
for (int j = ; j < maps[u].size(); j++) {
int v = maps[u][j].v;
int w = maps[u][j].w;
if (dis[u] + w < dis[v])
return false;
}
}
return true;
}
int main() {
int t; scanf("%d",&t);
while (t--) {
scanf("%d%d",&n,&m);
for (int i = ; i < n; i++) maps[i].clear(); for (int i = ; i <= m; i++) {
int u, v, w; scanf("%d%d%d",&u,&v,&w);
maps[u].push_back(edge{v,w});
}
for (int i = ; i <= ; i++) {
int u, v; scanf("%d%d",&u,&v);
bool flag = BellmanFord(v);
printf("%d\n",-dis[u]); //if (flag == false) continue;
maps[u].push_back(edge{v,-dis[u]});
}
}
}
spfa
#include<bits/stdc++.h>
using namespace std;
const int maxn = , maxm = ;
struct edge {
int v, w;
};
vector<edge> maps[maxn];
int dis[maxn], n, m;
bool vis[maxn]; void add(int u, int v, int w) {
maps[u].push_back(edge{v,w});
}
void spfa(int s) {
memset(dis, 0x3f3f3f3f, sizeof(dis));
memset(vis,,sizeof(vis));
queue<int> que;
que.push(s), dis[s] = , vis[s] = true;
while(!que.empty()) {
int u = que.front();
que.pop();
vis[u] = false;
for(int i = ; i < maps[u].size(); i++) {
int v = maps[u][i].v;
int w = maps[u][i].w;
if(dis[v] > dis[u]+w) {
dis[v] = dis[u] + w;
if(vis[v] == false) {
que.push(v);
vis[v] = true;
}
}
}
}
}
int main() {
int t; scanf("%d",&t);
while(t--) {
scanf("%d%d",&n,&m);
for (int i = ; i < n; i++) maps[i].clear();
for(int i = ; i <= m; i++) {
int u, v, w; scanf("%d%d%d",&u,&v,&w);
add(u,v,w);
}
for(int i = ; i <= ; i++) {
int u, v; scanf("%d%d",&u,&v);
spfa(v);
add(u,v,-dis[u]);
printf("%d\n",-dis[u]);
}
}
return ;
}
Holy Grail Bellman-Ford/spfa的更多相关文章
- ACM/ICPC 之 最短路径-Bellman Ford范例(POJ1556-POJ2240)
两道Bellman Ford解最短路的范例,Bellman Ford只是一种最短路的方法,两道都可以用dijkstra, SPFA做. Bellman Ford解法是将每条边遍历一次,遍历一次所有边可 ...
- poj1860 bellman—ford队列优化 Currency Exchange
Currency Exchange Time Limit: 1000MS Memory Limit: 30000K Total Submissions: 22123 Accepted: 799 ...
- 蓝桥杯 algo_5 最短路 (bellman,SPFA)
问题描述 给定一个n个顶点,m条边的有向图(其中某些边权可能为负,但保证没有负环).请你计算从1号点到其他点的最短路(顶点从1到n编号). 输入格式 第一行两个整数n, m. 接下来的m行,每行有三个 ...
- uva 558 - Wormholes(Bellman Ford判断负环)
题目链接:558 - Wormholes 题目大意:给出n和m,表示有n个点,然后给出m条边,然后判断给出的有向图中是否存在负环. 解题思路:利用Bellman Ford算法,若进行第n次松弛时,还能 ...
- Flex: Holy Grail
Flex:Holy Grail <html> <head> <style type="text/css"> body,div,header,ma ...
- 【CSS-flex】圣杯布局(Holy Grail Layout)、输入框的布局、悬挂式布局、固定的底栏
1.圣杯布局(Holy Grail Layout) 其指的是一种最常见的网站布局.页面从上到下,分成三个部分:头部(header),躯干(body),尾部(footer).其中躯干又水平分成三栏,从左 ...
- Bellman—Ford算法思想
---恢复内容开始--- Bellman—Ford算法能在更普遍的情况下(存在负权边)解决单源点最短路径问题.对于给定的带权(有向或无向)图G=(V,E),其源点为s,加权函数w是边集E的映射.对图G ...
- Bellman - Ford 算法解决最短路径问题
Bellman - Ford 算法: 一:基本算法 对于单源最短路径问题,上一篇文章中介绍了 Dijkstra 算法,但是由于 Dijkstra 算法局限于解决非负权的最短路径问题,对于带负权的图就力 ...
- Holy Grail【spfa求最短路】
题目链接:https://www.jisuanke.com/contest/3004?view=challenges 题目大意: 1.一个无向图,给出六个顶点,添六条边,但是添边是有限制的.每次添边的 ...
随机推荐
- 从Mac中完全删除office
sudo sh -c "curl -s https://raw.githubusercontent.com/jimye/OfficeUninstall/master/office_unins ...
- linux--配置开发环境 --Nginx篇
安装: 安装好了话,我们的nginx的目录在: /etc/nginx 启动: sudo service nginx start 然后访问我们的页面就可以看到了我们的界面 然后我们配置我们的域名: 我 ...
- Makefile 简要辅导 【转载】
A Simple Makefile Tutorial Makefiles are a simple way to organize code compilation. This tutorial do ...
- HDU 1421 搬寝室 解题报告(超详细)
**搬寝室 Time Limit: 2000/1000 MS Memory Limit: 65536/32768 K Problem Description 搬寝室是很累的,xhd深有体会.时间追述2 ...
- 数据结构--栈(附上STL栈)
定义: 栈是一种只能在某一端插入和删除数据的特殊线性表.他按照先进先出的原则存储数据,先进的数据被压入栈底,最后进入的数据在栈顶,需要读数据的时候从栈顶开始弹出数据(最后被压入栈的,最先弹出).因此栈 ...
- python(json 模块)
1.Json 定义 定义:JSON(JavaScript Object Notation, JS 对象简谱) 是一种轻量级的数据交换格式.JSON 的数据格式其实就是 python 里面的字典格式,里 ...
- CentOS7 安装boost
(1)到这个网址www.boost.org下载相应的代码包,我下载的是目前最新的版本boost_1_59_0.tar.bz2 (2)进入目录执行解压操作:tar -jxvf boost_1_59_0. ...
- Fiddler手机端抓包环境设置与过滤(一)
一.PC端Fiddler设置 1.安装https 证书 打开Fiddler->Tool->Fiddler Options->HTTPS tab,勾选上并Capture HTTPS C ...
- Android原生多语言切换方案,兼容Android10
前言 一个应用若需要国际化,至少需要支持中文和英语这两种语言,而同时随着谷歌的系统的更新,安卓系统可以设置当前语言的首选语言.因此,本文立足于此,多语言的切换方案为:App固定的文字内容,跟随系统,中 ...
- IoTClient开发6 - S7-200SmarTcp协议客户端实现
环境和工具 服务端电脑IP:192.168.1.130 客户端电脑IP:192.168.1.120 1.在服务端电脑运行IoTClientTool 2.运行Wireshark 3.在客户端电脑运行Io ...