opencv 移植
1.ubunut系统搭建opencv+python开发环境
1.1.ubuntu系统安装pip3工具
sudo apt-get install python3-pip //安装python模块安装工具pip3
sudo apt install python3-tk //安装tkinter模块(类似),图形显示模块
1.2.打开pycharm开发工具,点击File->New Project->工程保存在/opt/project/opencv目录下
1.3.然后点击File->Setting->Project opencv->Project interpreter->右侧:Project interpreter:Python3.6 /usr/bin/python3.6
1.4.然后点击“+”号,在弹出的对话框中输入“opencv”进行搜索,将"opencv-python"和"opencv-contrib-python"分别选中然后点击“Install Package”安装即可
同样搜索numpy,matplotlib安装
1.5.拷贝ftp://project/code/day15_day16/images图片目录到/opt/project/opencv/目录下
cp images /opt/project/opencv/
1.6.然后新建一个文件helloopencv.py测试是否能够显示图片,支持开发环境搭建完毕
工程保存在:/opt/project/opencv/opencv_test
添加代码:
import cv2 as cv
src = cv.imread("/opt/project/opencv/images/lena.png")
cv.imshow("input", src)
cv.waitKey(0)
cv.destroyAllWindows()
1.7.其余代码参见opencv目录代码和验证即可
2.ubuntu系统搭建opencv,c++开发环境
sudo apt-get install libopencv-dev
测试:
cd /opt/project/opencv/opencv_test
vim opencv_test.cpp 添加
#include
#include <opencv2/opencv.hpp>
using namespace std;
using namespace cv;
int main()
{
Mat srcImage = imread("/opt/project/opencv/images/lena.png");
imshow("源图像",srcImage);
waitKey(0);
return 0;
}
保存推出
g++ pkg-config opencv --cflags
opencv_test.cpp -o opencv_test pkg-config opencv --libs
./opencv_test
2.opencv移植步骤[目前支持C++]:
上位机执行:
2.1.获取源码:ftp://project/code/day14/opencv-3.4.3.zip
2.2.安装:sudo apt-get install cmake-qt-gui
2.3.配置编译opencv
mkdir /opt/project/opencv_source
mkdir /opt/project/opencv_source/opencv_arm
mkdir /opt/project/opencv_source/opencv_install
cp opencv-3.4.3.zip /opt/project/opencv_source/
cd /opt/project/opencv_source
unzip opencv-3.4.3.zip
cd /opt/project/opencv/opencv-3.4.3
cmake-gui
然后在出现的界面中做一下配置:
1.选择源代码目录:/opt/project/opencv_source/opencv-3.4.3/
2.选择Build目录:/opt/project/opencv_source/opencv_arm
3.点击Configure,保持generator为Unix Makefiles,选择Specify options for cross-compiling,点击Next
4.Operating System填写Linux
5.C Compilers填写/opt/toolchains/bin/arm-cortex_a9-linux-gnueabi-gcc
6.C++ Compilers填写/opt/toolchains/bin/arm-cortex_a9-linux-gnueabi-g++
7.程序库的Target Root填写/opt/toolchains/include
8.点击Finish
9.修改默认配置,默认安装目录为/usr/local,对于交叉编译的库来说并不合适,所以我把CMAKE_INSTALL_PREFIX变量改为/opt/project/opencv_source/opencv_install
10.选中INSTALL_PYTHON_EXAMPLE
11.将PYTHON3_EXECUTABLE修改为自己交叉编译的python路经:/opt/project/python_arm_install/bin/python3
12.将PYTHON3_INCLUDE_DIR修改为自己交叉编译的python路径:/opt/project/python_arm_install//include/python3.5m
13.将PYTHON3_LIBRARY修改为自己交叉编译python路径:/opt/project/python_arm_install/lib/python3.5/config-3.5m/libpython3.5m.a
//14.将PYTHON3_NUMPY_INCLUDE_DIRS修改为/usr/local/lib/python3.6/dist-packages/numpy/core/include
然后选择WITH_LIBV4L和WITH_V4L和WITH_QT
然后点击Configure
然后再次修改QT相关选项:
Qt5Concurrent_DIR:PATH=/opt/project/qt/lib/cmake/Qt5Concurrent
Qt5Core_DIR:PATH=/opt/project/qt/lib/cmake/Qt5Core
Qt5Gui_DIR:PATH=/opt/project/qt/lib/cmake/Qt5Gui
Qt5Test_DIR:PATH=/opt/project/qt/lib/cmake/Qt5Test
Qt5Widgets_DIR:PATH=/opt/project/qt/lib/cmake/Qt5Widgets
15.然后按Configure再点击Genertor
2.4.修改配置:
cd /opt/project/opencv_source/opencv_arm 执行
find ./ -name "flags.make" -exec sed -i "s/CXX_FLAGS = -fsigned-char/CXX_FLAGS = -fpic -fsigned-char/g" {} ;
find ./ -name "flags.make" -exec sed -i "s/C_FLAGS = -fsigned-char/C_FLAGS = -fpic -fsigned-char/g" {} ;
vim CMakeCache.txt
将:PYTHON3_INCLUDE_PATH:INTERNAL=/usr/local/include/python3.5m
修改为:
PYTHON3_INCLUDE_PATH:INTERNAL=/opt/project/python_arm_install/include/python3.5m
vim CMakeCache.txt
将PYTHON3_LIBRARIES:INTERNAL=/usr/local/lib/libpython3.5m.a
修改为PYTHON3_LIBRARIES:INTERNAL=/opt/project/python3_5_6_install/lib/python3.5/config-3.5m/libpython3.5m.a
保存推出
vim /opt/project/opencv_source/opencv-3.4.3/modules/videoio/src/cap_v4l.cpp
将#define MAX_CAMERAS 8
修改为#define MAX_CAMERAS 9
保存推出
编译安装
make -j4
make install
mkdir /opt/rootfs/home/opencv/
cp /opt/project/opencv_source/opencv_install/lib /opt/rootfs/home/opencv/ -frd
cp /opt/project/opencv_source/opencv_install/share /opt/rootfs/home/opencv/ -frd
cp /opt/project/opencv_source/opencv_install/bin /opt/rootfs/home/opencv/ -frd
vim /opt/rootfs/etc/profile 文件最后添加
export LD_LIBRARY_PATH=/home/opencv/lib:$LD_LIBRARY_PATH
保存退出
重启下位机
2.5.opencv C++测试:
参考代码位于:ftp://project/code/day14/
1.上位机执行:
mkdir /opt/project/opencv_test/capture/
cd /opt/project/opencv_test/capture
vim capture.cpp //拍照程序
/opt/project/qt/bin/qmake -project
vim capture.pro 添加:
INCLUDEPATH+=/opt/project/opencv_source/opencv_install/include
LIBS+=/opt/project/opencv_source/opencv_install/lib/libopencv_core.so
LIBS+=/opt/project/opencv_source/opencv_install/lib/libopencv_highgui.so
LIBS+=/opt/project/opencv_source/opencv_install/lib/libopencv_calib3d.so
LIBS+=/opt/project/opencv_source/opencv_install/lib/libopencv_features2d.so
LIBS+=/opt/project/opencv_source/opencv_install/lib/libopencv_flann.so
LIBS+=/opt/project/opencv_source/opencv_install/lib/libopencv_imgproc.so
LIBS+=/opt/project/opencv_source/opencv_install/lib/libopencv_imgcodecs.so
LIBS+=/opt/project/opencv_source/opencv_install/lib/libopencv_ml.so
LIBS+=/opt/project/opencv_source/opencv_install/lib/libopencv_objdetect.so
LIBS+=/opt/project/opencv_source/opencv_install/lib/libopencv_photo.so
LIBS+=/opt/project/opencv_source/opencv_install/lib/libopencv_superres.so
LIBS+=/opt/project/opencv_source/opencv_install/lib/libopencv_shape.so
LIBS+=/opt/project/opencv_source/opencv_install/lib/libopencv_videoio.so
LIBS+=/opt/project/opencv_source/opencv_install/lib/libopencv_video.so
LIBS+=/opt/project/opencv_source/opencv_install/lib/libopencv_videostab.so
LIBS+=/opt/project/opencv_source/opencv_install/lib/libopencv_stitching.so
保存退出
/opt/project/qt/bin/qmake
make
cp caputure /opt/rootfs/home/apptest
mkdir /opt/project/opencv_test/video/
cd /opt/project/opencv_test/video/
vim video_stream.cpp //视频显示程序
vim video.pro 添加:
INCLUDEPATH+=/opt/project/opencv_source/opencv_install/include
LIBS+=/opt/project/opencv_source/opencv_install/lib/libopencv_core.so
LIBS+=/opt/project/opencv_source/opencv_install/lib/libopencv_highgui.so
LIBS+=/opt/project/opencv_source/opencv_install/lib/libopencv_calib3d.so
LIBS+=/opt/project/opencv_source/opencv_install/lib/libopencv_features2d.so
LIBS+=/opt/project/opencv_source/opencv_install/lib/libopencv_flann.so
LIBS+=/opt/project/opencv_source/opencv_install/lib/libopencv_imgproc.so
LIBS+=/opt/project/opencv_source/opencv_install/lib/libopencv_imgcodecs.so
LIBS+=/opt/project/opencv_source/opencv_install/lib/libopencv_ml.so
LIBS+=/opt/project/opencv_source/opencv_install/lib/libopencv_objdetect.so
LIBS+=/opt/project/opencv_source/opencv_install/lib/libopencv_photo.so
LIBS+=/opt/project/opencv_source/opencv_install/lib/libopencv_superres.so
LIBS+=/opt/project/opencv_source/opencv_install/lib/libopencv_shape.so
LIBS+=/opt/project/opencv_source/opencv_install/lib/libopencv_videoio.so
LIBS+=/opt/project/opencv_source/opencv_install/lib/libopencv_video.so
LIBS+=/opt/project/opencv_source/opencv_install/lib/libopencv_videostab.so
LIBS+=/opt/project/opencv_source/opencv_install/lib/libopencv_stitching.so
保存退出
/opt/project/qt/bin/qmake
make
cp video /opt/rootfs/home/apptest
2.下位机然后插入摄像头运行:
cd /home/apptest
./capture
运行提示各种动态库找不到,在上位机上从交叉编译器中拷贝即可:
cp /opt/toolchains/arm-cortex_a9-linux-gnueabi/sysroot/lib/libstdc++.so.6* /opt/rootfs/lib/ -frd
cp /opt/toolchains/arm-cortex_a9-linux-gnueabi/sysroot/lib/librt* /opt/rootfs/lib/ -frd
3.然后下位机执行:
cd /home/apptest
./capture
查看picture.jpg照片
./video //查看LCD显示的视频
4.尝试将参考代码中的camerface.cpp人脸识别的代码在下位机
运行,摄像头对准头像实现人脸检测!
2.6.然后django添加拍照显示功能!
0.添加摄像头拍照硬件操作库
mkdir /opt/project/hwlib/capture/
cd /opt/project/hwlib/capture/
vim capture.cpp 添加:
#include<opencv2/opencv.hpp>
#include<opencv2/highgui/highgui.hpp>
#include<opencv2/imgproc/imgproc.hpp>
#include <opencv2/core/core.hpp>
#include<iostream>
#include<stdio.h>
using namespace cv;
using namespace std;
extern "C"
int camera(void)
{
VideoCapture capture(9);
Mat frame;
char filename[200];
capture >> frame;
sprintf(filename, "/home/django/ehome/ehome/static/images/picture.jpeg");
imwrite(filename, frame);
return 0;
}
保存退出
arm-cortex_a9-linux-gnueabi-g++ -shared -fpic -o libcapture.so capture.cpp
-I /opt/project/opencv_source/opencv_install/include/
-L /opt/project/opencv_source/opencv_install/lib/*.so
cp libcapture.so /opt/rootfs/home/applib
//注意一下操作步骤用pycharm工具搞定
1.修改urls.py,添加:
url('^capture$', view.capture),
2.修改view.py,文件最后添加:
拍照片
from ctypes import *
import os, sys
handle = CDLL('/home/applib/libcapture.so')
def capture(reqeuest):
ret = handle.camera()
if ret == 0:
return HttpResponse('拍照完毕,在主页面请刷新')
else:
return HttpResponse('拍照失败')
3.修改ehome.html,文件最后添加:
<form action="/capture">
<img id="picture" src="/static/images/picture.jpeg" width="320" height="240">
<input style="color: dodgerblue " type="submit" value="点击拍照">
<button onclick="reflush();return false">刷新</button>
<script type="text/javascript">
function reflush()
{
document.getElementById('picture').src="/static/images/picture.jpeg?"+Math.random();
console.log("刷新")
}
</script>
</form>
<hr/>
<br/>
<br/>
<br/>
注意路径问题
4.修改settings.py文件,文件最后添加:
cd /opt/rootfs/home/django/ehome/ehome
vim settings.py 文件最后添加:
设置图片等静态文件的路径
STATIC_ROOT = os.path.join(os.path.dirname(file),'static')
STATICFILES_DIRS = (
('css',os.path.join(STATIC_ROOT,'css').replace('\','/') ),
('js',os.path.join(STATIC_ROOT,'js').replace('\','/') ),
('images',os.path.join(STATIC_ROOT,'images').replace('\','/') ),
('upload',os.path.join(STATIC_ROOT,'upload').replace('\','/') ),
)
5.创建目录
cd /opt/rootfs/home/django/ehome/ehome //注意路经问题
mkdir static
cd static
mkdir images css js
说明:
images:保存图片
css:保存CSS配置文件
js:保存JS文件
6.浏览器测试:192.168.1.110:8000/ehome
下位机提前启动服务器:python manage.py runserver 0.0.0.0:8000
opencv 移植的更多相关文章
- 【转】OpenCV 移植学习--EMCV
在Opencv论坛有好些这方面的帖子,主要看了一下几个牛人的帖子,比如论坛管理员于博士Shiqi Yu:(EMCV:可在DSP上运行的OpenCV)http://www.opencv.org.cn/f ...
- Android平台下OpenCV移植与使用---基于C/C++
在<Android Studio增加NDK代码编译支持--Mac环境>和<Mac平台下Opencv开发环境搭建>两篇文章中,介绍了如何使用NDK环境和Opencv环境搭建与测试 ...
- ubuntu OPENCV移植
Installing OpenCV 2.4.1 in Ubuntu 12.04 LTS 这是转载国外一篇文章 移植PC上的OPENCV http://www.samontab.com/web/20 ...
- zedboard OPENCV移植
1:系统环境搭建 要准备好交叉编译环境 见http://blog.csdn.net/xiabodan/article/details/22717175 2:下载cmake CMake是一个跨平台的安装 ...
- opencv移植(二)
原文:https://blog.csdn.net/Guet_Kite/article/details/78667175?utm_source=copy 版权声明:本文为博主原创文章,转载请附上博文链接 ...
- opencv移植到ubuntu
原创博文,转载请标明出处--周学伟http://www.cnblogs.com/zxouxuewei/ OpenCV 2.2以后版本需要使用Cmake生成makefile文件,因此需要先安装cmake ...
- opencv移植(一)cmake安装
原文:https://blog.csdn.net/Guet_Kite/article/details/78667175?utm_source=copy 版权声明:本文为博主原创文章,转载请附上博文链接 ...
- 【Linux开发】OpenCV在ARM-linux上的移植过程遇到的问题4---共享库中嵌套库带路径【已解决】
[Linux开发]OpenCV在ARM-linux上的移植过程遇到的问题4-共享库中嵌套库带路径[已解决] 标签:[Linux开发] 紧接着上一篇,我居然又尝试了一下编译opencv,主要是因为由于交 ...
- 【Linux开发】OpenCV在ARM-linux上的移植过程遇到的问题1---cvNamedWindow调用报错的问题
问题描述: 这个实际上是最后一部的问题,将生成的共享库文件放入到了/usr/local/opencv-arm/lib下,并且设置了LD_LIBRARY_PATH中为/usr/local/opencv- ...
随机推荐
- 【Python Deap库】遗传算法/遗传编程 进化算法基于python DEAP库深度解析讲解
目录 前言 概述 启发式的理解(重点) 优化问题的定义 个体编码 初始族群的创建 评价 配种选择 锦标赛 轮盘赌选择 随机普遍抽样选择 变异 单点交叉 两点交叉 均匀交叉 部分匹配交叉 突变 高斯突变 ...
- 201771010128王玉兰《面向对象程序设计(Java)》第八周学习总结
第一部分:理论知识部分总结 (1)接口:接口不是类,而是对类胡一组需求描述,由常量肯一组抽象方法组成. a:接口中不包括变量和有具体实现的方法 b:只要类实现了接口,则该类要遵从接口描述的统 一格式进 ...
- Python小技巧:如何批量更新已安装的库?
众所周知,升级某个库(假设为 xxx),可以用pip install --upgrade xxx 命令,或者简写成pip install -U xxx . 如果有多个库,可以依次写在 xxx 后面,以 ...
- 学会使用Hdlbits网页版Verilog代码仿真验证平台
给大家推荐一款网页版的 Verilog代码编辑仿真验证平台,这个平台是国外的一家开源FPGA学习网站,通过“https://hdlbits.01xz.net/wiki/Main_Page” 地址链接进 ...
- 【JavaScript数据结构系列】02-栈Stack
[JavaScript数据结构系列]02-栈Stack 码路工人 CoderMonkey 转载请注明作者与出处 ## 1. 认识栈结构 栈是非常常用的一种数据结构,与数组同属线性数据结构,不同于数组的 ...
- [Objective-C] 021 KVC、KVO
写过C#的都知道C#通过反射读写一个对象的属性特别方便,可以利用字符串的方式去动态控制一个对象.其实在ObjC中,我们可以更高级点,根本不必进行任何操作就可以进行属性的动态读写,这种方式就是Key V ...
- SRAM电路工作原理
近年来,片上存储器发展迅速,根据国际半导体技术路线图(ITRS),随着超深亚微米制造工艺的成熟和纳米工艺的发展,晶体管特征尺寸进一步缩小,半导体存储器在片上存储器上所占的面积比例也越来越高.接下来宇芯 ...
- Beta冲刺——5.24
这个作业属于哪个课程 软件工程 这个作业要求在哪里 Beta冲刺 这个作业的目标 Beta冲刺 作业正文 正文 github链接 项目地址 其他参考文献 无 一.会议内容 1.安排每个人进行为期3天的 ...
- Rocket - interrupts - Xbar
https://mp.weixin.qq.com/s/icPGf4KdSOudwuNpLxdo7w 简单介绍Xbar的实现. 1. 简单介绍 IntXbar主要用于把上游多个中断源的中断组合在一起,然 ...
- Rocket - tilelink - FIFOFixer
https://mp.weixin.qq.com/s/JS4Pguwa6LXjPsMq6nW8HA 简单介绍FIFOFixer的实现. 1. 基本介绍 按照一定的策略把某一部分m ...