1.ubunut系统搭建opencv+python开发环境

1.1.ubuntu系统安装pip3工具

sudo apt-get install python3-pip //安装python模块安装工具pip3

sudo apt install python3-tk //安装tkinter模块(类似),图形显示模块

1.2.打开pycharm开发工具,点击File->New Project->工程保存在/opt/project/opencv目录下

1.3.然后点击File->Setting->Project opencv->Project interpreter->右侧:Project interpreter:Python3.6 /usr/bin/python3.6

1.4.然后点击“+”号,在弹出的对话框中输入“opencv”进行搜索,将"opencv-python"和"opencv-contrib-python"分别选中然后点击“Install Package”安装即可

同样搜索numpy,matplotlib安装

1.5.拷贝ftp://project/code/day15_day16/images图片目录到/opt/project/opencv/目录下

cp images /opt/project/opencv/

1.6.然后新建一个文件helloopencv.py测试是否能够显示图片,支持开发环境搭建完毕

工程保存在:/opt/project/opencv/opencv_test

添加代码:

import cv2 as cv

src = cv.imread("/opt/project/opencv/images/lena.png")

cv.imshow("input", src)

cv.waitKey(0)

cv.destroyAllWindows()

1.7.其余代码参见opencv目录代码和验证即可

2.ubuntu系统搭建opencv,c++开发环境

sudo apt-get install libopencv-dev

测试:

cd /opt/project/opencv/opencv_test

vim opencv_test.cpp 添加

#include

#include <opencv2/opencv.hpp>

using namespace std;
using namespace cv; int main()
{
Mat srcImage = imread("/opt/project/opencv/images/lena.png");
imshow("源图像",srcImage); waitKey(0); return 0;

}

保存推出

g++ pkg-config opencv --cflags opencv_test.cpp -o opencv_test pkg-config opencv --libs

./opencv_test

2.opencv移植步骤[目前支持C++]:

上位机执行:

2.1.获取源码:ftp://project/code/day14/opencv-3.4.3.zip

2.2.安装:sudo apt-get install cmake-qt-gui

2.3.配置编译opencv

mkdir /opt/project/opencv_source

mkdir /opt/project/opencv_source/opencv_arm

mkdir /opt/project/opencv_source/opencv_install

cp opencv-3.4.3.zip /opt/project/opencv_source/

cd /opt/project/opencv_source

unzip opencv-3.4.3.zip

cd /opt/project/opencv/opencv-3.4.3

cmake-gui

然后在出现的界面中做一下配置:

1.选择源代码目录:/opt/project/opencv_source/opencv-3.4.3/

2.选择Build目录:/opt/project/opencv_source/opencv_arm

3.点击Configure,保持generator为Unix Makefiles,选择Specify options for cross-compiling,点击Next

4.Operating System填写Linux

5.C Compilers填写/opt/toolchains/bin/arm-cortex_a9-linux-gnueabi-gcc

6.C++ Compilers填写/opt/toolchains/bin/arm-cortex_a9-linux-gnueabi-g++

7.程序库的Target Root填写/opt/toolchains/include

8.点击Finish

9.修改默认配置,默认安装目录为/usr/local,对于交叉编译的库来说并不合适,所以我把CMAKE_INSTALL_PREFIX变量改为/opt/project/opencv_source/opencv_install

10.选中INSTALL_PYTHON_EXAMPLE

11.将PYTHON3_EXECUTABLE修改为自己交叉编译的python路经:/opt/project/python_arm_install/bin/python3

12.将PYTHON3_INCLUDE_DIR修改为自己交叉编译的python路径:/opt/project/python_arm_install//include/python3.5m

13.将PYTHON3_LIBRARY修改为自己交叉编译python路径:/opt/project/python_arm_install/lib/python3.5/config-3.5m/libpython3.5m.a

//14.将PYTHON3_NUMPY_INCLUDE_DIRS修改为/usr/local/lib/python3.6/dist-packages/numpy/core/include

然后选择WITH_LIBV4L和WITH_V4L和WITH_QT

然后点击Configure

然后再次修改QT相关选项:

Qt5Concurrent_DIR:PATH=/opt/project/qt/lib/cmake/Qt5Concurrent

Qt5Core_DIR:PATH=/opt/project/qt/lib/cmake/Qt5Core

Qt5Gui_DIR:PATH=/opt/project/qt/lib/cmake/Qt5Gui

Qt5Test_DIR:PATH=/opt/project/qt/lib/cmake/Qt5Test

Qt5Widgets_DIR:PATH=/opt/project/qt/lib/cmake/Qt5Widgets

15.然后按Configure再点击Genertor

2.4.修改配置:

cd /opt/project/opencv_source/opencv_arm 执行

find ./ -name "flags.make" -exec sed -i "s/CXX_FLAGS = -fsigned-char/CXX_FLAGS = -fpic -fsigned-char/g" {} ;

find ./ -name "flags.make" -exec sed -i "s/C_FLAGS = -fsigned-char/C_FLAGS = -fpic -fsigned-char/g" {} ;

vim CMakeCache.txt

将:PYTHON3_INCLUDE_PATH:INTERNAL=/usr/local/include/python3.5m

修改为:

PYTHON3_INCLUDE_PATH:INTERNAL=/opt/project/python_arm_install/include/python3.5m

vim CMakeCache.txt

将PYTHON3_LIBRARIES:INTERNAL=/usr/local/lib/libpython3.5m.a

修改为PYTHON3_LIBRARIES:INTERNAL=/opt/project/python3_5_6_install/lib/python3.5/config-3.5m/libpython3.5m.a

保存推出

vim /opt/project/opencv_source/opencv-3.4.3/modules/videoio/src/cap_v4l.cpp

将#define MAX_CAMERAS 8

修改为#define MAX_CAMERAS 9

保存推出

编译安装

make -j4

make install

mkdir /opt/rootfs/home/opencv/

cp /opt/project/opencv_source/opencv_install/lib /opt/rootfs/home/opencv/ -frd

cp /opt/project/opencv_source/opencv_install/share /opt/rootfs/home/opencv/ -frd

cp /opt/project/opencv_source/opencv_install/bin /opt/rootfs/home/opencv/ -frd

vim /opt/rootfs/etc/profile 文件最后添加

export LD_LIBRARY_PATH=/home/opencv/lib:$LD_LIBRARY_PATH

保存退出

重启下位机

2.5.opencv C++测试:

参考代码位于:ftp://project/code/day14/

1.上位机执行:

mkdir /opt/project/opencv_test/capture/

cd /opt/project/opencv_test/capture

vim capture.cpp //拍照程序

/opt/project/qt/bin/qmake -project

vim capture.pro 添加:

INCLUDEPATH+=/opt/project/opencv_source/opencv_install/include

LIBS+=/opt/project/opencv_source/opencv_install/lib/libopencv_core.so

LIBS+=/opt/project/opencv_source/opencv_install/lib/libopencv_highgui.so

LIBS+=/opt/project/opencv_source/opencv_install/lib/libopencv_calib3d.so

LIBS+=/opt/project/opencv_source/opencv_install/lib/libopencv_features2d.so

LIBS+=/opt/project/opencv_source/opencv_install/lib/libopencv_flann.so

LIBS+=/opt/project/opencv_source/opencv_install/lib/libopencv_imgproc.so

LIBS+=/opt/project/opencv_source/opencv_install/lib/libopencv_imgcodecs.so

LIBS+=/opt/project/opencv_source/opencv_install/lib/libopencv_ml.so

LIBS+=/opt/project/opencv_source/opencv_install/lib/libopencv_objdetect.so

LIBS+=/opt/project/opencv_source/opencv_install/lib/libopencv_photo.so

LIBS+=/opt/project/opencv_source/opencv_install/lib/libopencv_superres.so

LIBS+=/opt/project/opencv_source/opencv_install/lib/libopencv_shape.so

LIBS+=/opt/project/opencv_source/opencv_install/lib/libopencv_videoio.so

LIBS+=/opt/project/opencv_source/opencv_install/lib/libopencv_video.so

LIBS+=/opt/project/opencv_source/opencv_install/lib/libopencv_videostab.so

LIBS+=/opt/project/opencv_source/opencv_install/lib/libopencv_stitching.so

保存退出

/opt/project/qt/bin/qmake

make

cp caputure /opt/rootfs/home/apptest

mkdir /opt/project/opencv_test/video/

cd /opt/project/opencv_test/video/

vim video_stream.cpp //视频显示程序

vim video.pro 添加:

INCLUDEPATH+=/opt/project/opencv_source/opencv_install/include

LIBS+=/opt/project/opencv_source/opencv_install/lib/libopencv_core.so

LIBS+=/opt/project/opencv_source/opencv_install/lib/libopencv_highgui.so

LIBS+=/opt/project/opencv_source/opencv_install/lib/libopencv_calib3d.so

LIBS+=/opt/project/opencv_source/opencv_install/lib/libopencv_features2d.so

LIBS+=/opt/project/opencv_source/opencv_install/lib/libopencv_flann.so

LIBS+=/opt/project/opencv_source/opencv_install/lib/libopencv_imgproc.so

LIBS+=/opt/project/opencv_source/opencv_install/lib/libopencv_imgcodecs.so

LIBS+=/opt/project/opencv_source/opencv_install/lib/libopencv_ml.so

LIBS+=/opt/project/opencv_source/opencv_install/lib/libopencv_objdetect.so

LIBS+=/opt/project/opencv_source/opencv_install/lib/libopencv_photo.so

LIBS+=/opt/project/opencv_source/opencv_install/lib/libopencv_superres.so

LIBS+=/opt/project/opencv_source/opencv_install/lib/libopencv_shape.so

LIBS+=/opt/project/opencv_source/opencv_install/lib/libopencv_videoio.so

LIBS+=/opt/project/opencv_source/opencv_install/lib/libopencv_video.so

LIBS+=/opt/project/opencv_source/opencv_install/lib/libopencv_videostab.so

LIBS+=/opt/project/opencv_source/opencv_install/lib/libopencv_stitching.so

保存退出

/opt/project/qt/bin/qmake

make

cp video /opt/rootfs/home/apptest

2.下位机然后插入摄像头运行:

cd /home/apptest

./capture

运行提示各种动态库找不到,在上位机上从交叉编译器中拷贝即可:

cp /opt/toolchains/arm-cortex_a9-linux-gnueabi/sysroot/lib/libstdc++.so.6* /opt/rootfs/lib/ -frd

cp /opt/toolchains/arm-cortex_a9-linux-gnueabi/sysroot/lib/librt* /opt/rootfs/lib/ -frd

3.然后下位机执行:

cd /home/apptest

./capture

查看picture.jpg照片

./video //查看LCD显示的视频

4.尝试将参考代码中的camerface.cpp人脸识别的代码在下位机

运行,摄像头对准头像实现人脸检测!

2.6.然后django添加拍照显示功能!

0.添加摄像头拍照硬件操作库

mkdir /opt/project/hwlib/capture/

cd /opt/project/hwlib/capture/

vim capture.cpp 添加:

#include<opencv2/opencv.hpp>
#include<opencv2/highgui/highgui.hpp>
#include<opencv2/imgproc/imgproc.hpp>
#include <opencv2/core/core.hpp>
#include<iostream>
#include<stdio.h>
using namespace cv;
using namespace std; extern "C"
int camera(void)
{
VideoCapture capture(9);
Mat frame;
char filename[200];
capture >> frame;
sprintf(filename, "/home/django/ehome/ehome/static/images/picture.jpeg");
imwrite(filename, frame);
return 0;
}

保存退出

arm-cortex_a9-linux-gnueabi-g++ -shared -fpic -o libcapture.so capture.cpp

-I /opt/project/opencv_source/opencv_install/include/

-L /opt/project/opencv_source/opencv_install/lib/*.so

cp libcapture.so /opt/rootfs/home/applib

//注意一下操作步骤用pycharm工具搞定

1.修改urls.py,添加:

url('^capture$', view.capture),

2.修改view.py,文件最后添加:

拍照片

from ctypes import *

import os, sys

handle = CDLL('/home/applib/libcapture.so')

def capture(reqeuest):

ret = handle.camera()

if ret == 0:

return HttpResponse('拍照完毕,在主页面请刷新')

else:

return HttpResponse('拍照失败')

3.修改ehome.html,文件最后添加:

       <form action="/capture">
<img id="picture" src="/static/images/picture.jpeg" width="320" height="240">
<input style="color: dodgerblue " type="submit" value="点击拍照">
<button onclick="reflush();return false">刷新</button>
<script type="text/javascript">
function reflush()
{
document.getElementById('picture').src="/static/images/picture.jpeg?"+Math.random();
console.log("刷新")
}
</script>
</form>
<hr/>
<br/>
<br/>
<br/>
注意路径问题

4.修改settings.py文件,文件最后添加:

cd /opt/rootfs/home/django/ehome/ehome

vim settings.py 文件最后添加:

设置图片等静态文件的路径

STATIC_ROOT = os.path.join(os.path.dirname(file),'static')

STATICFILES_DIRS = (

('css',os.path.join(STATIC_ROOT,'css').replace('\','/') ),

('js',os.path.join(STATIC_ROOT,'js').replace('\','/') ),

('images',os.path.join(STATIC_ROOT,'images').replace('\','/') ),

('upload',os.path.join(STATIC_ROOT,'upload').replace('\','/') ),

)

5.创建目录

cd /opt/rootfs/home/django/ehome/ehome //注意路经问题

mkdir static

cd static

mkdir images css js

说明:

images:保存图片

css:保存CSS配置文件

js:保存JS文件

6.浏览器测试:192.168.1.110:8000/ehome

下位机提前启动服务器:python manage.py runserver 0.0.0.0:8000

opencv 移植的更多相关文章

  1. 【转】OpenCV 移植学习--EMCV

    在Opencv论坛有好些这方面的帖子,主要看了一下几个牛人的帖子,比如论坛管理员于博士Shiqi Yu:(EMCV:可在DSP上运行的OpenCV)http://www.opencv.org.cn/f ...

  2. Android平台下OpenCV移植与使用---基于C/C++

    在<Android Studio增加NDK代码编译支持--Mac环境>和<Mac平台下Opencv开发环境搭建>两篇文章中,介绍了如何使用NDK环境和Opencv环境搭建与测试 ...

  3. ubuntu OPENCV移植

    Installing OpenCV 2.4.1 in Ubuntu 12.04 LTS 这是转载国外一篇文章  移植PC上的OPENCV  http://www.samontab.com/web/20 ...

  4. zedboard OPENCV移植

    1:系统环境搭建 要准备好交叉编译环境 见http://blog.csdn.net/xiabodan/article/details/22717175 2:下载cmake CMake是一个跨平台的安装 ...

  5. opencv移植(二)

    原文:https://blog.csdn.net/Guet_Kite/article/details/78667175?utm_source=copy 版权声明:本文为博主原创文章,转载请附上博文链接 ...

  6. opencv移植到ubuntu

    原创博文,转载请标明出处--周学伟http://www.cnblogs.com/zxouxuewei/ OpenCV 2.2以后版本需要使用Cmake生成makefile文件,因此需要先安装cmake ...

  7. opencv移植(一)cmake安装

    原文:https://blog.csdn.net/Guet_Kite/article/details/78667175?utm_source=copy 版权声明:本文为博主原创文章,转载请附上博文链接 ...

  8. 【Linux开发】OpenCV在ARM-linux上的移植过程遇到的问题4---共享库中嵌套库带路径【已解决】

    [Linux开发]OpenCV在ARM-linux上的移植过程遇到的问题4-共享库中嵌套库带路径[已解决] 标签:[Linux开发] 紧接着上一篇,我居然又尝试了一下编译opencv,主要是因为由于交 ...

  9. 【Linux开发】OpenCV在ARM-linux上的移植过程遇到的问题1---cvNamedWindow调用报错的问题

    问题描述: 这个实际上是最后一部的问题,将生成的共享库文件放入到了/usr/local/opencv-arm/lib下,并且设置了LD_LIBRARY_PATH中为/usr/local/opencv- ...

随机推荐

  1. wepy 小程序开发(interceptor拦截器 && WXS)

    WePY全局拦截器可对原生API的请求进行拦截. import wepy from 'wepy'; export default class extends wepy.app { constructo ...

  2. 2.7 Go交叉编译

    Golang 支持交叉编译,在一个平台上生成另一个平台的可执行程序,最近使用了一下,非常好用,这里备忘一下. Mac 下编译 Linux 和 Windows 64位可执行程序 CGO_ENABLED= ...

  3. WebApiClient性能参考

    1 文章目的 昨天写了走进WebApiClientCore的设计,介绍了WebApiClient的变化与设计之后,收到大家支持的.赞许的,还有好的建议和顾虑,比如WebApiClient性能怎么样,有 ...

  4. GreenPlum-数据存储目录迁移及常用操作

    一.环境介绍 Greenplum5 3节点集群,Centos7.2虚拟机, 二.需求 因为/home目录磁盘空间已满,需要将Greenplum的数据存储目录转移到新的分区/opt目录下,虚拟机磁盘管理 ...

  5. javaWeb普通类获取ApplicationContext

    网上看了很多关于获取ApplicationContext的方法,五大方法,但是我用web服务使用成功的就这一个,自己记忆下. import javax.servlet.ServletContextEv ...

  6. FTP上传 -首先上传文件到的那台电脑得安装ftp

    /*↓↓↓↓ add upload ftp file 2014-03-16*/        /*↓↓↓↓ add 2014-03-16 ftp upload file*/    var $ftpse ...

  7. JavaScript基础技术总结

    javascript的作用 HTML网页运行在浏览器端,与用户没有交互功能,用户访问网页的时候只能看,如果网页没有程序员去更新,永远是一成不变的.JavaScript就是可以让程序运行在网页上,提高客 ...

  8. 王艳 201771010127《面向对象程序设计(Java)》第四周学习总结

    第一部分:理论知识. 第四章:对象与类 4.1:类与对象的概念. 类:是构造对象的模板或蓝图.由类构造对象的过程称为创建类的实例. 对象:想要使用oop,一定要清楚对象的三个特性: 1)对象的行为:对 ...

  9. Python3高级核心技术97讲

    可以毫不夸张的说:这门课程是初中级Python开发人员向高级进阶的必学课程 许多Pythoner喜欢追求新的框架,但却不重视Python本身基础知识的学习, 他们不知道的是,语言本身的进阶优先于框架, ...

  10. Unity读取StreamingAssets路径下的文件

    /// <summary> ///读取StreamingAssets中的文件 /// </summary> /// <param name="path" ...