Eight II HDU - 3567
Eight II
Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 130000/65536 K (Java/Others)
Total Submission(s): 4621 Accepted Submission(s): 1006
In this game, you are given a 3 by 3 board and 8 tiles. The tiles are numbered from 1 to 8 and each covers a grid. As you see, there is a blank grid which can be represented as an 'X'. Tiles in grids having a common edge with the blank grid can be moved into that blank grid. This operation leads to an exchange of 'X' with one tile.
We use the symbol 'r' to represent exchanging 'X' with the tile on its right side, and 'l' for the left side, 'u' for the one above it, 'd' for the one below it.
A state of the board can be represented by a string S using the rule showed below.
The problem is to operate an operation list of 'r', 'u', 'l', 'd' to turn the state of the board from state A to state B. You are required to find the result which meets the following constrains:
1. It is of minimum length among all possible solutions.
2. It is the lexicographically smallest one of all solutions of minimum length.
The input of each test case consists of two lines with state A occupying the first line and state B on the second line.
It is guaranteed that there is an available solution from state A to B.
The first line is in the format of "Case x: d", in which x is the case number counted from one, d is the minimum length of operation list you need to turn A to B.
S is the operation list meeting the constraints and it should be showed on the second line.
12X453786
12345678X
564178X23
7568X4123
dd
Case 2: 8
urrulldr
康拓展开 %orz
康托展开是一个全排列到一个自然数的双射,常用于构建哈希表时的空间压缩。 康托展开的实质是计算当前排列在所有由小到大全排列中的顺序,因此是可逆的。
以下称第x个全排列是都是指由小到大的顺序。
康拓展开式
\[X=a_{n}\left ( n-1 \right )!+a_{n-1}\left ( n-2 \right )!+\cdots a_{1}\cdot 0!\]
例如,3 5 7 4 1 2 9 6 8 展开为 98884。因为X=2*8!+3*7!+4*6!+2*5!+0*4!+0*3!+2*2!+0*1!+0*0!=98884.
解释:
排列的第一位是3,比3小的数有两个,以这样的数开始的排列有8!个,因此第一项为2*8!
排列的第二位是5,比5小的数有1、2、3、4,由于3已经出现,因此共有3个比5小的数,这样的排列有7!个,因此第二项为3*7!
以此类推,直至0*0!
用途
显然,n位(0~n-1)全排列后,其康托展开唯一且最大约为n!,因此可以由更小的空间来储存这些排列。由公式可将X逆推出唯一的一个排列。
code
static const int FAC[] = {, , , , , , , , , }; // 阶乘
int cantor(int *a, int n)
{
int x = ;
for (int i = ; i < n; ++i) {
int smaller = ; // 在当前位之后小于其的个数
for (int j = i + ; j < n; ++j) {
if (a[j] < a[i])
smaller++;
}
x += FAC[n - i - ] * smaller; // 康托展开累加
}
return x; // 康托展开值
}
#include<iostream>
#include<cstdio>
#include<cstdlib>
#include<sstream>
#include<cstring>
#include<string>
#include<vector>
#include<set>
#include<stack>
#include<queue>
#include<map>
#include<cmath>
#include<algorithm>
using namespace std;
#define inf 0x3f3f3f3f
#define ll long long
#define MAX_N 362882 + 10
#define gcd(a,b) __gcd(a,b)
#define mem(a,x) memset(a,x,sizeof(a))
#define mid(a,b) a+b/2
#define stol(a) atoi(a.c_str())//string to long
int fac[];
int beg[][] ={{, , , , , , , , },{, , , , , , , , },{, , , , , , , , },{, , , , , , , , },{, , , , , , , , },{, , , , , , , , },{, , , , , , , , },{, , , , , , , , },{, , , , , , , , }};
int dir[][] = {{,},{,-},{,},{-,}};
char operate[] = "dlru";
int c;
int cal_cantor(int a[]){
int ans = ;
for (int i = ; i < ; i++){
int temp = ;
for (int j = i + ; j < ; j++){
if (a[j] < a[i]){
temp++;
}
}
ans += temp * fac[ - i];
}
return ans;
}
int temp[];
int mark[];
int start_cantor[];
struct Node{
int a[];
int x;
};
struct Vis{
int pre;
char p;
int step;
}vis[][MAX_N]; void bfs(int t,Node node){
queue<Node> que;
que.push(node);
while(que.size()){
Node n = que.front();
que.pop();
int n_contor = cal_cantor(n.a);
int pos = n.x;
for(int i = ; i < ; i++){
int x = n.x/;
int y = n.x%;
int nx = x + dir[i][];
int ny = y + dir[i][];
if(nx >= && nx < && ny >= && ny < ){
int cnt = nx * + ny;
swap(n.a[cnt],n.a[pos]);
n.x = cnt;
int v = cal_cantor(n.a);
if(vis[t][v].pre == -&&v!=start_cantor[t]){
vis[t][v].pre = n_contor;
vis[t][v].p = operate[i];
vis[t][v].step = vis[t][n_contor].step + ;
que.push(n);
}
n.x = pos;//
swap(n.a[cnt],n.a[pos]);
} } }
} void init(){
fac[] = fac[] = ;
for (int i = ; i < ; i++){
fac[i] = fac[i - ] * i;
}
for(int i = ; i < ; i++){
for(int j = ; j < MAX_N;j++)
vis[i][j].pre = -;
}
Node node;
for(int i = ; i < ; i++){
swap(node.a,beg[i]);
node.x = i;
start_cantor[i] = cal_cantor(node.a);
bfs(i,node);
swap(node.a,beg[i]);
}
}
int main(){
//std::ios::sync_with_stdio(false);
//std::cin.tie(0);
#ifndef ONLINE_JUDGE
freopen("D:\\in.txt","r",stdin);
freopen("D:\\out.txt","w",stdout);
#else
#endif
init();
int T;
scanf("%d",&T);
string str;
int t = ;
while(T--){
cin >> str;
for(int i = ; i < ; ++i){
temp[i] = (str[i] == 'X'? : str[i]-'');
if(str[i] == 'X')
c = i;
}
for(int i = ; i < ; ++i){
mark[temp[i]] = beg[c][i];
}
cin >> str;
for(int i = ; i < ; ++i){
temp[i] = (str[i] == 'X'? : str[i]-'');
temp[i] = mark[temp[i]];
}
Node n;
swap(n.a,temp);
int end_ = cal_cantor(n.a);
printf("Case %d: %d\n",++t,vis[c][end_].step);
string ans = "";
while(vis[c][end_].step!=){
ans = vis[c][end_].p + ans;
end_ = vis[c][end_].pre;
}
cout<<ans<<endl; } return ;
}
Eight II HDU - 3567的更多相关文章
- HDU 3567 Eight II(八数码 II)
HDU 3567 Eight II(八数码 II) /65536 K (Java/Others) Problem Description - 题目描述 Eight-puzzle, which is ...
- POJ-1077 HDU 1043 HDU 3567 Eight (BFS预处理+康拓展开)
思路: 这三个题是一个比一个令人纠结呀. POJ-1077 爆搜可以过,94ms,注意不能用map就是了. #include<iostream> #include<stack> ...
- HDU 3567 Eight II
Eight II Time Limit: 2000ms Memory Limit: 65536KB This problem will be judged on HDU. Original ID: 3 ...
- HDU 3567 Eight II 打表,康托展开,bfs,g++提交可过c++不可过 难度:3
http://acm.hdu.edu.cn/showproblem.php?pid=3567 相比Eight,似乎只是把目标状态由确定的改成不确定的,但是康托展开+曼哈顿为h值的A*和IDA*都不过, ...
- HDU 3567 Eight II BFS预处理
题意:就是八数码问题,给你开始的串和结束的串,问你从开始到结束的最短且最小的变换序列是什么 分析:我们可以预处理打表,这里的这个题可以和HDU1430魔板那个题采取一样的做法 预处理打表,因为八数码问 ...
- HDU - 3567 Eight II (bfs预处理 + 康托) [kuangbin带你飞]专题二
类似HDU1430,不过本题需要枚举X的九个位置,分别保存状态,因为要保证最少步数.要保证字典序最小的话,在扩展节点时,方向顺序为:down, left, right, up. 我用c++提交1500 ...
- hdu 1430+hdu 3567(预处理)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=1430 思路:由于只是8种颜色,所以标号就无所谓了,对起始状态重新修改标号为 12345678,对目标状 ...
- (回文串 Manacher)吉哥系列故事——完美队形II -- hdu -- 4513
http://acm.hdu.edu.cn/showproblem.php?pid=4513 吉哥系列故事——完美队形II Time Limit: 3000/1000 MS (Java/Others) ...
- (全排列)Ignatius and the Princess II -- HDU -- 1027
链接: http://acm.hdu.edu.cn/showproblem.php?pid=1027 Ignatius and the Princess II Time Limit: 2000/100 ...
随机推荐
- python学习笔记(13)常用模块列表总结
os模块: os.remove() 删除文件 os.unlink() 删除文件 os.rename() 重命名文件 os.listdir() 列出指定目录下所有文件 os.chdir() 改变当前工作 ...
- Fastjson主要接口和类库说明
2.主要的使用入口 Fastjson API入口类是com.alibaba.fastjson.JSON,常用的序列化操作都可以在JSON类上的静态方法直接完成. public static final ...
- python语法基础-基础-变量和数据类型
############### 第一个python程序 ############### print("hello python") # 打印hello python # 分 ...
- python学习笔记(9)函数(一)
定义一个函数 你可以定义一个由自己想要功能的函数,以下是简单的规则: 函数代码块以 def 关键词开头,后接函数标识符名称和圆括号 (). 任何传入参数和自变量必须放在圆括号中间,圆括号之间可以用于定 ...
- getline的使用
函数定义: getline(istream &in, string &s) 作用: 在C++中用 string 类型进行终端输入字符串时,解决无法输入带有空格的字符串的问题. 功能: ...
- PHP--foreach的问题
<?php echo "<pre>"; $data = ['a', 'b', 'c']; foreach($data as $key => $val){ $ ...
- Dubbo+zookeeper 基础讲解
一.dubbo是什么? 1)本质:一个Jar包,一个分布式框架,,一个远程服务调用的分布式框架. 既然是新手教学,肯定很多同学不明白什么是分布式和远程服务调用,为什么要分布式,为什么要远程调用.我简单 ...
- 【GBK、UTF-8、ISO8859-1】三种编码方式总结及实例
感谢:https://blog.csdn.net/youngstar70/article/details/64117297 一.总结 在Java中,String的getBytes()方法是得到一个操作 ...
- ffmpeg android移植
CMake语法简介(androidstudio中利用CMake开发NDK): http://blog.csdn.net/u013718120/article/details/62883711FFmpe ...
- Java 判断字符串是否包含某个字符
// 判断不为静态栏目的文章 if (e.getCategory().getName().indexOf("静态") == -1) { articleList2.add(e); } ...