像这样细节老是打挂不行啊……

A plane is flying at a constant height of hh meters above the ground surface. Let's consider that it is flying from the point (−109,h)(−109,h) to the point (109,h)(109,h) parallel with OxOx axis.

A glider is inside the plane, ready to start his flight at any moment (for the sake of simplicity let's consider that he may start only when the plane's coordinates are integers). After jumping from the plane, he will fly in the same direction as the plane, parallel to OxOx axis, covering a unit of distance every second. Naturally, he will also descend; thus his second coordinate will decrease by one unit every second.

There are ascending air flows on certain segments, each such segment is characterized by two numbers x1x1 and x2x2 (x1<x2x1<x2) representing its endpoints. No two segments share any common points. When the glider is inside one of such segments, he doesn't descend, so his second coordinate stays the same each second. The glider still flies along OxOx axis, covering one unit of distance every second.

If the glider jumps out at 11, he will stop at 1010. Otherwise, if he jumps out at 22, he will stop at 1212.

Determine the maximum distance along OxOx axis from the point where the glider's flight starts to the point where his flight ends if the glider can choose any integer coordinate to jump from the plane and start his flight. After touching the ground the glider stops altogether, so he cannot glide through an ascending airflow segment if his second coordinate is 0.

Input

The first line contains two integers nn and hh (1≤n≤2⋅105,1≤h≤109)(1≤n≤2⋅105,1≤h≤109) — the number of ascending air flow segments and the altitude at which the plane is flying, respectively.

Each of the next nn lines contains two integers xi1xi1 and xi2xi2 (1≤xi1<xi2≤109) — the endpoints of the ii-th ascending air flow segment. No two segments intersect, and they are given in ascending order.

Output

Print one integer — the maximum distance along OxOx axis that the glider can fly from the point where he jumps off the plane to the point where he lands if he can start his flight at any integer coordinate.


题目大意

二维坐标系里有一些蓝色区域和白色区域。在蓝色区域中飞行高度不会降低;在白色区域中飞行每个单位会降低一个单位。

请找出一条路径使得水平飞行距离最远。

题目分析

可以看成是这个东西:

那么相当于是在选取的ci≤h的情况下,使Σwi最大。

于是做法还是挺显然的,因为对于每个起点,选取的[l,r]是单调的。

关键在于边界条件的小细节……今天做的时候WA了两发。

 #include<bits/stdc++.h>
const int maxn = ; int n,h,l,r,lim,ans,cnt;
int ls[maxn],rs[maxn];
int w[maxn],c[maxn]; int read()
{
char ch = getchar();
int num = ;
bool fl = ;
for (; !isdigit(ch); ch = getchar())
if (ch=='-') fl = ;
for (; isdigit(ch); ch = getchar())
num = (num<<)+(num<<)+ch-;
if (fl) num = -num;
return num;
}
int main()
{
n = read(), h = read();
for (int i=; i<=n; i++) ls[i] = read(), rs[i] = read();
for (int i=; i<=n; i++)
w[i] = rs[i]-ls[i], c[i] = ls[i+]-rs[i];
r = , cnt = ans = w[];
for (int i=; i<=n; i++)
{
while (r<n&&lim+c[r]<h) lim += c[r++], cnt += w[r];
ans = std::max(ans, cnt);
if (r!=i) lim -= c[i];        //向前推一格
else cnt += w[i+1], r = i+1;    //间隙太大,置零重开
cnt -= w[i];    //减去当前位置
}
printf("%d\n",ans+h);
return ;
}

END

【two pointers 细节题】cf1041dD. Glider的更多相关文章

  1. Codeforces Round #392 (Div. 2)-758D. Ability To Convert(贪心,细节题)

    D. Ability To Convert time limit per test 1 second Cmemory limit per test 256 megabytes input standa ...

  2. 【线段树 细节题】bzoj1067: [SCOI2007]降雨量

    主要还是细节分析:线段树作为工具 Description 我们常常会说这样的话:“X年是自Y年以来降雨量最多的”.它的含义是X年的降雨量不超过Y年,且对于任意Y<Z<X,Z年的降雨量严格小 ...

  3. zoj 3745 Salary Increasing(坑爹的细节题!)

    题目 注意题目中的,引用绝望的乐园中的进一步解释如下: 这是一道浙大月赛的题,一如既往的坑爹,好好一道水题,被搞成一道坑题!!! //注意:r(i) < l(i+1) !细节啊细节! #incl ...

  4. 【交互 细节题 思维题】cf1064E. Dwarves, Hats and Extrasensory Abilities

    第一次做交互真有趣……:挺好的细节思维题 This is an interactive problem. In good old times dwarves tried to develop extr ...

  5. bzoj1067——SCOI2007降雨量(线段树,细节题)

    题目描述 我们常常会说这样的话:"X年是自Y年以来降雨量最多的".它的含义是X年的降雨量不超过Y年,且对于任意\(Y<Z<X\),Z年的降雨量严格小于X年.例如2002 ...

  6. Codeforces 571E - Geometric Progressions(数论+阿巴细节题)

    Codeforces 题目传送门 & 洛谷题目传送门 u1s1 感觉此题思维难度不太大,不过大概是细节多得到了精神污染的地步所以才放到 D1E 的罢((( 首先我们对所有 \(a_i,b_i\ ...

  7. Han Move(细节题)

    Problem 1609 - Han Move Time Limit: 1000MS   Memory Limit: 65536KB    Total Submit: 620  Accepted: 1 ...

  8. An Easy Problem?!(细节题,要把所有情况考虑到)

    http://poj.org/problem?id=2826 An Easy Problem?! Time Limit: 1000MS   Memory Limit: 65536K Total Sub ...

  9. TOJ3955: NKU ACM足球赛(并查集+map+细节题)

    时间限制(普通/Java):5000MS/15000MS     内存限制:65536KByte 描述 NKU ACM最近要举行足球赛,作为此次赛事的负责人,Lee要对报名人员进行分队.分队要遵循如下 ...

随机推荐

  1. sql server添加sa用户和密码

    昨天给网站“搬家”(更换服务器),我是在win7上安装的 sql server2012,安装过程很顺利,用“Windows 身份验证” 也可正常访问.但是用sa用户访问数据库出现了 错误:18456. ...

  2. (转载)常用Git命令清单

    我每天使用Git,但是很多命令记不住 一般来说,日常使用只要记住下图6个命令,就可以了.但是熟练使用,恐怕要记住60~100个命令 下面是我整理的常用Git命令清单. Workspace:工作区 In ...

  3. Net Core2.0下使用Dapper

    Net Core2.0下使用Dapper 今天成功把.Net Framework下使用Dapper进行封装的ORM成功迁移到.Net Core 2.0上,在迁移的过程中也遇到一些很有意思的问题,值得和 ...

  4. redis和mysql同步 终极解决方案

    使用Canal,类似mysql的主从复制,实时更新 具体使用之后更新

  5. 《从0到1学习Flink》—— Data Source 介绍

    前言 Data Sources 是什么呢?就字面意思其实就可以知道:数据来源. Flink 做为一款流式计算框架,它可用来做批处理,即处理静态的数据集.历史的数据集:也可以用来做流处理,即实时的处理些 ...

  6. This file's format is not supported or you don't specify a correct format. 解决办法

    string path = @"c:\请假统计表.xlsx"; Workbook workBook = new Workbook(); workBook.Open(path); A ...

  7. 【转】ibatis 中使用select top #pagesize# * from tablename

    ibatis中使用select top #num# * from tableName出现错误.由于初次用ibatis还不知道在它里边拼写SQL语句的一些规则,导致一些自认为很平常的SQL语句,在它这里 ...

  8. Lodop套打

    记录一下Lodop套打模板 实现打印功能需电脑已经连接打印机(打印什么类型的东西就连接相应的打印机 (普通大打印机 打印标签 打印发票各种打印机))和已经安装好lodop控件 控件可到官网进行下载 h ...

  9. Spring Aspect 获取请求参数

    切片(Aspect)也就是Spring AOP 实现Aspect的主要步骤: 1.在哪里切入 .在哪个方法起作用 .什么时候起作用 2.起作用的时候执行什么处理逻辑 下面是代码实现 /** * 切片A ...

  10. Java的API及Object类、String类、字符串缓冲区

    Java 的API 1.1定义 API: Application(应用) Programming(程序) Interface(接口) Java API就是JDK中提供给开发者使用的类,这些类将底层的代 ...