BZOJ_3566_[SHOI2014]概率充电器_概率+树形DP
BZOJ_3566_[SHOI2014]概率充电器_概率+树形DP
Description
著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品——概率充电器:
“采用全新纳米级加工技术,实现元件与导线能否通电完全由真随机数决定!SHOI 概率充电器,您生活不可或缺的必需品!能充上电吗?现在就试试看吧!
”
SHOI 概率充电器由 n-1 条导线连通了 n 个充电元件。进行充电时,每条导线是否可以导电以概率决定,每一个充电元件自身是否直接进行充电也由概率决定。
随后电能可以从直接充电的元件经过通电的导线使得其他充电元件进行间接充电。
作为 SHOI 公司的忠实客户,你无法抑制自己购买 SHOI 产品的冲动。在排了一个星期的长队之后终于入手了最新型号的 SHOI 概率充电器。
你迫不及待地将 SHOI 概率充电器插入电源——这时你突然想知道,进入充电状态的元件个数的期望是多少呢?
Input
第一行一个整数:n。概率充电器的充电元件个数。充电元件由 1-n 编号。
之后的 n-1 行每行三个整数 a, b, p,描述了一根导线连接了编号为 a 和 b 的
充电元件,通电概率为 p%。
第 n+2 行 n 个整数:qi。表示 i 号元件直接充电的概率为 qi%。
Output
输出一行一个实数,为进入充电状态的元件个数的期望,四舍五入到六位小数
Sample Input
1 2 50
1 3 50
50 0 0
Sample Output
HINT
对于 100%的数据,n≤500000,0≤p,qi≤100。
求通电的元件期望个数等价于求每个点通电的概率,然后加一起。
设F[x]表示x的子树不给x供电的概率。
需要满足x不带电,且对于所有儿子,要么儿子不带电,要么儿子带电,连得这条边不带电。
f[x]=(1-w[x])*(f[to]+(1-f[to])*(1-val[i]))。
设g[x]表示x的父亲不给x供电的概率。
需要先求一个fa[x]不带电(没有儿子的影响下)的概率,然后同上。
这个的概率是(f[fa[x]]*g[fa[x]])/(f[x]+(1-f[x])*(1-val[i]))。
最后每个点带电的概率就是1-f[x]*g[x]。
代码:
#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
inline char nc() {
static char buf[100000],*p1,*p2;
return p1==p2&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++;
}
int rd() {
int x=0; char s=nc();
while(s<'0'||s>'9') s=nc();
while(s>='0'&&s<='9') x=(x<<3)+(x<<1)+s-'0',s=nc();
return x;
}
typedef double f2;
#define N 500050
int head[N],to[N<<1],nxt[N<<1],n,cnt;
f2 val[N<<1],w[N],f[N],g[N],ans[N],sum;
inline void add(int u,int v,int w) {
to[++cnt]=v; nxt[cnt]=head[u]; head[u]=cnt; val[cnt]=w/100.0;
}
void dfs1(int x,int y) {
int i;
f[x]=1-w[x];
for(i=head[x];i;i=nxt[i]) {
if(to[i]!=y) {
dfs1(to[i],x);
f[x]=f[x]*(f[to[i]]+(1-f[to[i]])*(1-val[i]));
}
}
}
void dfs2(int x,int y) {
ans[x]=1-f[x]*g[x];
sum+=ans[x];
int i;
for(i=head[x];i;i=nxt[i]) {
if(to[i]!=y) {
f2 tmp=(1-ans[x])/(f[to[i]]+(1-f[to[i]])*(1-val[i]));
g[to[i]]=tmp+(1-tmp)*(1-val[i]);
dfs2(to[i],x);
}
}
}
int main() {
n=rd();
register int i,x,y,z;
for(i=1;i<n;i++) {
x=rd(); y=rd(); z=rd(); add(x,y,z); add(y,x,z);
}
for(i=1;i<=n;i++) w[i]=rd()/100.0;
dfs1(1,0);
g[1]=1;
dfs2(1,0);
printf("%.6f\n",sum);
}
BZOJ_3566_[SHOI2014]概率充电器_概率+树形DP的更多相关文章
- [BZOJ3566][SHOI2014]概率充电器 换根树形DP
链接 题意:n个充电元件形成一棵树,每个点和每条边都有各自的充电概率,元件可以自身充电或者通过其他点和边间接充电,求充电状态元件的期望个数 题解 设1为根节点 设 \(f[x]\) 表示 \(x\) ...
- 【BZOJ 3566】 3566: [SHOI2014]概率充电器 (概率树形DP)
3566: [SHOI2014]概率充电器 Description 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品——概率充电器:“采用全新纳米级加工技术,实现元件与导线能否通电 ...
- luogu P4284 [SHOI2014]概率充电器 期望 概率 树形dp
LINK:概率充电器 大概是一个比较水的题目 不过有一些坑点. 根据期望的线性性 可以直接计算每个元件的期望 累和即为答案. 考虑统计每一个元件的概率的话 那么对其有贡献就是儿子 父亲 以及自己. 自 ...
- BZOJ3566 SHOI2014 概率充电器 【概率DP】
BZOJ3566 SHOI2014 概率充电器 Description 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品——概率充电器: “采用全新纳米级加工技术,实现元件与导线能 ...
- 【Luogu】P4284概率充电器(概率树形DP)
题目链接 这题好神啊…… 设f[i]为i没电的概率,初始化$f[i]=1-q[i]$ 之后x的电有三个来源: 1.x自己有电 2.x的儿子给它传来了电 3.x的父亲给它传来了电 对于2和3操作分别做一 ...
- [SHOI2014]概率充电器(概率+换根dp)
著名的电子产品品牌SHOI 刚刚发布了引领世界潮流的下一代电子产品—— 概率充电器: “采用全新纳米级加工技术,实现元件与导线能否通电完全由真随机数决 定!SHOI 概率充电器,您生活不可或缺的必需品 ...
- 2018.08.31 bzoj3566: [SHOI2014]概率充电器(概率dp+容斥原理)
传送门 概率dp好题啊. 用f[i]" role="presentation" style="position: relative;">f[i] ...
- Bzoj3566/洛谷P4284 [SHOI2014]概率充电器(概率dp)
题面 Bzoj 洛谷 题解 首先考虑从儿子来的贡献: $$ f[u]=\prod_{v \in son[u]}f[v]+(1-f[v])\times(1-dis[i]) $$ 根据容斥原理,就是儿子直 ...
- 概率专题_概率/ 数学_基础题_ABEI
上周三讲了概率和概率dp.如果没有涉及其他综合算法,概率这种题主要是思维,先把这部分的东西写完 给个题目链接:https://vjudge.net/contest/365300#problem Hea ...
随机推荐
- mac mysql忘记密码解决办法
http://www.jb51.net/article/87580.htm http://blog.csdn.net/soft2buy/article/details/50223373
- curl如何发送json数据?如何发送form数据?python的restfull又该如何获取这些数据?
1.python使用flask+flask_restfull框架写的api接口,做为服务 2.curl 做为客户端发送数据 from flask import request curl发送json的方 ...
- python numpy实现多次循环读取文件 等间隔过滤数据
numpy的np.fromfile会出现如下的问题,只能一次性读取文件的内容,不能追加读取,连续两次的np.fromfile读到的东西一样 如果数据文件太大(几个G或以上)不能一次性全读进去,需要追加 ...
- opencv yuv420与Mat互转
项目用到opencv 融合图片的功能,经过一天的调试,达到预期目标,先将如何调用opencv库实现YUV42与Mat互转记录下来. 一.下载opencv编译的库下载地址是:http://opencv. ...
- 【转载】C#扫盲之:带你掌握C#的扩展方法、以及探讨扩展方法的本质、注意事项
1.为什么需要扩展方法 .NET3.5给我们提供了扩展方法的概念,它的功能是在不修改要添加类型的原有结构时,允许你为类或结构添加新方法. 思考:那么究竟为什么需要扩展方法呢,为什么不直接修改原有类型呢 ...
- [C#]使用 C# 代码实现拓扑排序 dotNet Core WEB程序使用 Nginx反向代理 C#里面获得应用程序的当前路径 关于Nginx设置端口号,在Asp.net 获取不到的,解决办法 .Net程序员 初学Ubuntu ,配置Nignix 夜深了,写了个JQuery的省市区三级级联效果
[C#]使用 C# 代码实现拓扑排序 目录 0.参考资料 1.介绍 2.原理 3.实现 4.深度优先搜索实现 回到顶部 0.参考资料 尊重他人的劳动成果,贴上参考的资料地址,本文仅作学习记录之用. ...
- IOS UIWebView 随记
UIWebView中加载的网页尺寸太大,如何让网页适应屏幕大小 webview.scalesPageToFit = YES;
- Appium python自动化测试系列之认识Appium(四)
4.1界面认识 在之前安装appium的时候说过我们有两种方法安装,也就有两种结果,一种是有界面的,一种是没有界面的,首先我们先讲一下有界面的,以及界面有哪些东西. 首先看第一幅图,如果你的是win ...
- FFmpeg解码详细流程
FFmpeg在解码一个视频的时候的函数调用流程.为了保证结构清晰,其中仅列出了最关键的函数,剔除了其它不是特别重要的函数. 下面解释一下图中关键标记的含义. 函数背景色 函数在图中以方框的形式表现出来 ...
- windows下的txt格式转换成linux下的TXT
存在的问题是 多出一个方框或者黑格子 主要是因为bash 不能忽略windows的问题 用sed 命令来处理,分别是windows转linux,linux转windows sed -e 's/.$// ...