BZOJ_3566_[SHOI2014]概率充电器_概率+树形DP

Description

著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品——概率充电器:
“采用全新纳米级加工技术,实现元件与导线能否通电完全由真随机数决定!SHOI 概率充电器,您生活不可或缺的必需品!能充上电吗?现在就试试看吧!

SHOI 概率充电器由 n-1 条导线连通了 n 个充电元件。进行充电时,每条导线是否可以导电以概率决定,每一个充电元件自身是否直接进行充电也由概率决定。
随后电能可以从直接充电的元件经过通电的导线使得其他充电元件进行间接充电。
作为 SHOI 公司的忠实客户,你无法抑制自己购买 SHOI 产品的冲动。在排了一个星期的长队之后终于入手了最新型号的 SHOI 概率充电器。
你迫不及待地将 SHOI 概率充电器插入电源——这时你突然想知道,进入充电状态的元件个数的期望是多少呢?

Input

第一行一个整数:n。概率充电器的充电元件个数。充电元件由 1-n 编号。
之后的 n-1 行每行三个整数 a, b, p,描述了一根导线连接了编号为 a 和 b 的
充电元件,通电概率为 p%。
第 n+2 行 n 个整数:qi。表示 i 号元件直接充电的概率为 qi%。

Output

输出一行一个实数,为进入充电状态的元件个数的期望,四舍五入到六位小数

Sample Input

3
1 2 50
1 3 50
50 0 0

Sample Output

1.000000

HINT

对于 100%的数据,n≤500000,0≤p,qi≤100。


求通电的元件期望个数等价于求每个点通电的概率,然后加一起。

设F[x]表示x的子树不给x供电的概率。

需要满足x不带电,且对于所有儿子,要么儿子不带电,要么儿子带电,连得这条边不带电。

f[x]=(1-w[x])*(f[to]+(1-f[to])*(1-val[i]))。

设g[x]表示x的父亲不给x供电的概率。

需要先求一个fa[x]不带电(没有儿子的影响下)的概率,然后同上。

这个的概率是(f[fa[x]]*g[fa[x]])/(f[x]+(1-f[x])*(1-val[i]))。

最后每个点带电的概率就是1-f[x]*g[x]。

代码:

#include <cstdio>
#include <cstring>
#include <algorithm>
using namespace std;
inline char nc() {
static char buf[100000],*p1,*p2;
return p1==p2&&(p2=(p1=buf)+fread(buf,1,100000,stdin),p1==p2)?EOF:*p1++;
}
int rd() {
int x=0; char s=nc();
while(s<'0'||s>'9') s=nc();
while(s>='0'&&s<='9') x=(x<<3)+(x<<1)+s-'0',s=nc();
return x;
}
typedef double f2;
#define N 500050
int head[N],to[N<<1],nxt[N<<1],n,cnt;
f2 val[N<<1],w[N],f[N],g[N],ans[N],sum;
inline void add(int u,int v,int w) {
to[++cnt]=v; nxt[cnt]=head[u]; head[u]=cnt; val[cnt]=w/100.0;
}
void dfs1(int x,int y) {
int i;
f[x]=1-w[x];
for(i=head[x];i;i=nxt[i]) {
if(to[i]!=y) {
dfs1(to[i],x);
f[x]=f[x]*(f[to[i]]+(1-f[to[i]])*(1-val[i]));
}
}
}
void dfs2(int x,int y) {
ans[x]=1-f[x]*g[x];
sum+=ans[x];
int i;
for(i=head[x];i;i=nxt[i]) {
if(to[i]!=y) {
f2 tmp=(1-ans[x])/(f[to[i]]+(1-f[to[i]])*(1-val[i]));
g[to[i]]=tmp+(1-tmp)*(1-val[i]);
dfs2(to[i],x);
}
}
}
int main() {
n=rd();
register int i,x,y,z;
for(i=1;i<n;i++) {
x=rd(); y=rd(); z=rd(); add(x,y,z); add(y,x,z);
}
for(i=1;i<=n;i++) w[i]=rd()/100.0;
dfs1(1,0);
g[1]=1;
dfs2(1,0);
printf("%.6f\n",sum);
}

BZOJ_3566_[SHOI2014]概率充电器_概率+树形DP的更多相关文章

  1. [BZOJ3566][SHOI2014]概率充电器 换根树形DP

    链接 题意:n个充电元件形成一棵树,每个点和每条边都有各自的充电概率,元件可以自身充电或者通过其他点和边间接充电,求充电状态元件的期望个数 题解 设1为根节点 设 \(f[x]\) 表示 \(x\) ...

  2. 【BZOJ 3566】 3566: [SHOI2014]概率充电器 (概率树形DP)

    3566: [SHOI2014]概率充电器 Description 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品——概率充电器:“采用全新纳米级加工技术,实现元件与导线能否通电 ...

  3. luogu P4284 [SHOI2014]概率充电器 期望 概率 树形dp

    LINK:概率充电器 大概是一个比较水的题目 不过有一些坑点. 根据期望的线性性 可以直接计算每个元件的期望 累和即为答案. 考虑统计每一个元件的概率的话 那么对其有贡献就是儿子 父亲 以及自己. 自 ...

  4. BZOJ3566 SHOI2014 概率充电器 【概率DP】

    BZOJ3566 SHOI2014 概率充电器 Description 著名的电子产品品牌 SHOI 刚刚发布了引领世界潮流的下一代电子产品——概率充电器: “采用全新纳米级加工技术,实现元件与导线能 ...

  5. 【Luogu】P4284概率充电器(概率树形DP)

    题目链接 这题好神啊…… 设f[i]为i没电的概率,初始化$f[i]=1-q[i]$ 之后x的电有三个来源: 1.x自己有电 2.x的儿子给它传来了电 3.x的父亲给它传来了电 对于2和3操作分别做一 ...

  6. [SHOI2014]概率充电器(概率+换根dp)

    著名的电子产品品牌SHOI 刚刚发布了引领世界潮流的下一代电子产品—— 概率充电器: “采用全新纳米级加工技术,实现元件与导线能否通电完全由真随机数决 定!SHOI 概率充电器,您生活不可或缺的必需品 ...

  7. 2018.08.31 bzoj3566: [SHOI2014]概率充电器(概率dp+容斥原理)

    传送门 概率dp好题啊. 用f[i]" role="presentation" style="position: relative;">f[i] ...

  8. Bzoj3566/洛谷P4284 [SHOI2014]概率充电器(概率dp)

    题面 Bzoj 洛谷 题解 首先考虑从儿子来的贡献: $$ f[u]=\prod_{v \in son[u]}f[v]+(1-f[v])\times(1-dis[i]) $$ 根据容斥原理,就是儿子直 ...

  9. 概率专题_概率/ 数学_基础题_ABEI

    上周三讲了概率和概率dp.如果没有涉及其他综合算法,概率这种题主要是思维,先把这部分的东西写完 给个题目链接:https://vjudge.net/contest/365300#problem Hea ...

随机推荐

  1. Seinfeld(杭电3351)

    Seinfeld Time Limit: 2000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others) Total S ...

  2. host dig nslookup bind

    这三个工具包含在yum install bind-utils -y dig -t mx|ns|A baidu.com qq.com dig -x 113,11.2.11 http://www.cnbl ...

  3. Codeforces Round #313 (Div. 2) ABC

    A http://codeforces.com/contest/560/problem/A 推断给出的数能否组成全部自然数. 水题 int a[1010]; bool b[1000010]; int ...

  4. 使用Lua 局部变量来优化性能,同一时候比較局部变量和全局变量

    在竞争激烈的游戏行业中,尤其页游,面对策划复杂和频繁的需求,使用脚本能够减少难度和成本.在使用Lua的过程中,会常常訪问全局变量来作为配置文件. 在訪问全局变量时,能够通过局部变量引用全局变量来优化. ...

  5. Odoo event

    使用流程 建立活动 发布到网站 在线销售 订单确认,付款确认 注册.出席     建立活动         设置门票         确认并发布到网站     进入编辑模式,即可在线编辑活动     ...

  6. Content Provider 详解

    几个概念:Cursor. Content provider . Uri  .contentresolver 1. Cursor : 个人理解为数据库中的一行数据,它是每行数据的集合.它是一个类.通过它 ...

  7. Jenkins 的安装与简单使用

    一.安装 项目中接触到了jenkins感觉是一个不错的项目发布构建工具,自己就简单的学习了一下,记录一下方便以后使用 jenkin下载地址:https://jenkins-ci.org/   我直接使 ...

  8. XSS过滤

    XSS过滤封装用法 封装到app01/form.py文件中进行验证 from django.forms import Form,widgets,fields class ArticleForm(For ...

  9. 笔记04 WPF对象引用

    转自:http://www.fx114.net/qa-261-90254.aspx 我们应该都知道,XAML是一种声明式语言,XAML的标签声明的就是对象.一个XAML标签会对应着一个对象,这个对象一 ...

  10. Anacoda 介绍、安装、环境切换

    官网下载 概述 很多学习python的初学者甚至学了有一段时间的人接触到anaconda或者其他虚拟环境工具时觉得无从下手, 其主要原因就是不明白这些工具究竟有什么用, 是用来做什么的, 为什么要这么 ...