题目大意:

在一个有向图中,有n个顶点,给出m对数字(u,v)表示顶点u和顶点v必须直接或者间接相连,让你构造一个这样的图,输出最少需要多少条边。

挖坑待填

官方题解链接:http://codeforces.com/blog/entry/15889、

传送门:http://www.codeforces.com/problemset/problem/505/D

【CF505D】Mr. Kitayuta's Technology的更多相关文章

  1. 【CF506E】Mr. Kitayuta's Gift dp转有限状态自动机+矩阵乘法

    [CF506E]Mr. Kitayuta's Gift 题意:给你一个字符串s,你需要在s中插入n个字符(小写字母),每个字符可以被插在任意位置.问可以得到多少种本质不同的字符串,使得这个串是回文的. ...

  2. 【codeforces 505D】Mr. Kitayuta's Technology

    [题目链接]:http://codeforces.com/problemset/problem/505/D [题意] 让你构造一张有向图; n个点; 以及所要求的m对联通关系(xi,yi) 即要求这张 ...

  3. 【codeforces 505C】Mr.Kitayuta,the Treasure Hunter

    [题目链接]:http://codeforces.com/problemset/problem/505/C [题意] 一开始你跳一步长度为d; 之后你每步能跳d-1,d,d+1这3种步数; 然后在路上 ...

  4. CodeForces 506B/505D Mr. Kitayuta's Technology

    Portal:http://codeforces.com/problemset/problem/506/B http://codeforces.com/problemset/problem/505/D ...

  5. 【Codeforces 506E】Mr.Kitayuta’s Gift&&【BZOJ 4214】黄昏下的礼物 dp转有限状态自动机+矩阵乘法优化

    神题……胡乱讲述一下思维过程……首先,读懂题.然后,转化问题为构造一个长度为|T|+n的字符串,使其内含有T这个子序列.之后,想到一个简单的dp.由于是回文串,我们就增量构造半个回文串,设f(i,j, ...

  6. 【译】About the Java Technology

    About the Java Technology Java technology is both a programming language and a platform. The Java Pr ...

  7. 【Hadoop】MR 切片机制 & MR全流程

    1.概念 2.Split机制 3.MR Shuffle过程 4.MR中REDUCE与MAP写作过程 5.MR全貌

  8. [CF#286 Div2 D]Mr. Kitayuta's Technology(结论题)

    题目:http://codeforces.com/contest/505/problem/D 题目大意:就是给你一个n个点的图,然后你要在图中加入尽量少的有向边,满足所有要求(x,y),即从x可以走到 ...

  9. 【AGC015E】Mr.Aoki Incubator DP

    题目描述 数轴上有\(n\)个人,每个人的位置是\(x_i\),速度是\(v_i\). 最开始有一些人感染了传染病. 如果某一时刻一个正常人和一个被感染的人处于同一位置,那么这个正常人也会被感染. 问 ...

随机推荐

  1. VMware9虚拟机安装MAC OS X Mountain Lion 10.8.2详细图文教程

    VMware虚拟机安装Mac OS X Mountain Lion 10.8.2所需文件:1.Vmware 9.01版下载:点击进入2.Vmware 9.01版汉化文件:点击进入3.VMware Wo ...

  2. Windows上PostgreSQL安装配置教程

    Windows上PostgreSQL安装配置教程 这篇文章主要为大家详细介绍了Windows上PostgreSQL安装配置教程,具有一定的参考价值,感兴趣的小伙伴们可以参考一下 PostgreSQL的 ...

  3. SDWebImage解析

    SDWebImage托管在github上.https://github.com/rs/SDWebImage 这个类库提供一个UIImageView类别以支持加载来自网络的远程图片.具有缓存管理.异步下 ...

  4. GCD和NSThread延时执行对比

    1.NSThread: [self performSelector:@selector(performSome:) withObject:self afterDelay:.f]; [[self cla ...

  5. 关于在vue 中使用百度ueEditor

    1. 安装  npm i vue-ueditor --save-dev 2.从nodemodels  取出ueditor1_4_3_3 这整个目录,放入vue 的 static 目录 3.配置 ued ...

  6. 洛谷 P3601 签到题

    https://www.luogu.org/problemnew/show/P3601 一道关于欧拉函数的题. 读完题目以后我们知道所谓的$aindao(x)=x- \phi (x) $. 对于x小的 ...

  7. 【NOIP2017提高A组冲刺11.8】好文章

    #include<algorithm> #include<iostream> #include<cstring> #include<cstdio> us ...

  8. SpringBoot引入监听器

    方法一: 实现ServletContextListener ,并添加@WebListener注解 因为ServletContextListener 是由servlet容器管理,游离于spring容器之 ...

  9. verilog 1995 VS 2001 part1模块声明的扩展

    1.模块声明的扩展 (1)端口声明(input/output/inout)同数据类型声明(reg /wire)放在同一语句中. (2)ANSI C风格的端口声明可以用于module/task/func ...

  10. UVa 11651 Krypton Number System DP + 矩阵快速幂

    题意: 有一个\(base(2 \leq base \leq 6)\)进制系统,这里面的数都是整数,不含前导0,相邻两个数字不相同. 而且每个数字有一个得分\(score(1 \leq score \ ...