UVA10655 Contemplation! Algebra —— 推公式、矩阵快速幂
题目链接:https://vjudge.net/problem/UVA-10655

题意:
a+b、ab的值分别为p、q,求a^n+b^n。
题解:
1.a、b未知,且直接求出a、b也不太实际。
2.看到 a^n+b^n 这个式子就想到二阶齐次递推式的通项公式,然后就想是否能通过通项公式反推回递推式。结果发现a、b的值是不能确定是否相等的,而求二阶齐次递推式的通项公式时,是需要根据根的情况来分类求解的,所以此题不适应。
3.那么,就直接对 a^n+b^n 做一下变形:

4.得到递推式之后,就直接构造矩阵,然后快速幂。
代码如下:
#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <vector>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <string>
#include <set>
using namespace std;
typedef long long LL;
const int INF = 2e9;
const LL LNF = 9e18;
const int MOD = 1e9+;
const int MAXN = 1e6+; const int Size = ;
struct MA
{
LL mat[Size][Size];
void init()
{
for(int i = ; i<Size; i++)
for(int j = ; j<Size; j++)
mat[i][j] = (i==j);
}
}; MA mul(MA x, MA y)
{
MA ret;
memset(ret.mat, , sizeof(ret.mat));
for(int i = ; i<Size; i++)
for(int j = ; j<Size; j++)
for(int k = ; k<Size; k++)
ret.mat[i][j] += 1LL*x.mat[i][k]*y.mat[k][j];
return ret;
} MA qpow(MA x, LL y)
{
MA s;
s.init();
while(y)
{
if(y&) s = mul(s, x);
x = mul(x, x);
y >>= ;
}
return s;
} int main()
{
LL p, q, n, f[];
while(scanf("%lld%lld%lld", &p,&q,&n)==)
{
f[] = ; f[] = p;
if(n<=)
{
printf("%lld\n", f[n]);
continue;
} MA s;
memset(s.mat, , sizeof(s.mat));
s.mat[][] = p; s.mat[][] = -q;
s.mat[][] = ; s.mat[][] = ; s = qpow(s, n-);
LL ans = 1LL*s.mat[][]*f[] + 1LL*s.mat[][]*f[];
printf("%lld\n", ans);
}
}
UVA10655 Contemplation! Algebra —— 推公式、矩阵快速幂的更多相关文章
- CCF 201312-4 有趣的数 (数位DP, 状压DP, 组合数学+暴力枚举, 推公式, 矩阵快速幂)
问题描述 我们把一个数称为有趣的,当且仅当: 1. 它的数字只包含0, 1, 2, 3,且这四个数字都出现过至少一次. 2. 所有的0都出现在所有的1之前,而所有的2都出现在所有的3之前. 3. 最高 ...
- HDU6050: Funny Function(推公式+矩阵快速幂)
传送门 题意 利用给出的式子求\(F_{m,1}\) 分析 直接推公式(都是找规律大佬) \(n为偶数,F_{m,1}=\frac{2(2^n-1)^{m-1}}3\) \(n为奇数,F_{m,1}= ...
- hihoCoder 1143 : 骨牌覆盖问题·一(递推,矩阵快速幂)
[题目链接]:click here~~ 时间限制:10000ms 单点时限:1000ms 内存限制:256MB 描述 骨牌,一种古老的玩具.今天我们要研究的是骨牌的覆盖问题: 我们有一个2xN的长条形 ...
- [HDOJ2604]Queuing(递推,矩阵快速幂)
题目链接:http://acm.hdu.edu.cn/showproblem.php?pid=2604 递推式是百度的,主要是练习一下如何使用矩阵快速幂优化. 递推式:f(n)=f(n-1)+f(n- ...
- hdu 6185 递推+【矩阵快速幂】
<题目链接> <转载于 >>> > 题目大意: 让你用1*2规格的地毯去铺4*n规格的地面,告诉你n,问有多少种不同的方案使得地面恰好被铺满且地毯不重叠.答案 ...
- HDU - 2604 Queuing(递推式+矩阵快速幂)
Queuing Time Limit: 10000/5000 MS (Java/Others) Memory Limit: 32768/32768 K (Java/Others)Total Su ...
- HDU5950 Recursive sequence 非线性递推式 矩阵快速幂
题目传送门 题目描述:给出一个数列的第一项和第二项,计算第n项. 递推式是 f(n)=f(n-1)+2*f(n-2)+n^4. 由于n很大,所以肯定是矩阵快速幂的题目,但是矩阵快速幂只能解决线性的问题 ...
- hdu 5950 Recursive sequence 递推式 矩阵快速幂
题目链接 题意 给定\(c_0,c_1,求c_n(c_0,c_1,n\lt 2^{31})\),递推公式为 \[c_i=c_{i-1}+2c_{i-2}+i^4\] 思路 参考 将递推式改写\[\be ...
- [题解][SHOI2013]超级跳马 动态规划/递推式/矩阵快速幂优化
这道题... 让我见识了纪中的强大 这道题是来纪中第二天(7.2)做的,这么晚写题解是因为 我去学矩阵乘法啦啦啦啦啦对矩阵乘法一窍不通的童鞋戳链接啦 层层递推会TLE,正解矩阵快速幂 首先题意就是给你 ...
随机推荐
- CodeForces - 600F Edge coloring of bipartite graph
Discription You are given an undirected bipartite graph without multiple edges. You should paint the ...
- GLSL预定义变量
GLSL为不同的渲染阶段定义了一些特定的变量.这些预定义(也叫做内置变量)有特定的属性.所有的预定义变量都以gl_开头.用户定义的变量不能以此开头. 下面分类进行介绍. (1)顶点着色器输入 in i ...
- CentOS 笔记
对安装CentOS安装使用过程中的问题做一个笔记,第一次安装,安装的是7.0版本,最小化安装. 安装环境 :Windows 2012 R2 Standard,Hyper-V Virstual Mach ...
- django忘记超级用户密码的解决方法
用Django shell: 1 python manage.py shell 然后获取你的用户名,并且重设密码: 1 2 3 4 from django.contrib.auth.models im ...
- 将可执行程序的内存空间扩展到3GB(windows)
为了告知操作系统这个应用程序可以支持/3GB方式,我们需要往exe 文件头中添加一个 IMAGE_FILE_LARGE_ADDRESS_AWARE 标志.添加的方式很简单: 在你的系统的 Progra ...
- 完美删除vector的内容与释放内存
问题:stl中的vector容器常常造成删除假象,这对于c++程序员来说是极其讨厌的,<effective stl>大师已经将之列为第17条,使用交换技巧来修整过剩容量.内存空洞这个名词是 ...
- Foundation框架 - NSException类
NSException类 WBStudentManager.h #import <Foundation/Foundation.h> NSString* const NameInvalidE ...
- C#动态编译dll或exe
string strCode = @" using System; using System.Text; using System.Collections.Generic; using Sy ...
- 【转载】C#扫盲之:带你掌握C#的扩展方法、以及探讨扩展方法的本质、注意事项
1.为什么需要扩展方法 .NET3.5给我们提供了扩展方法的概念,它的功能是在不修改要添加类型的原有结构时,允许你为类或结构添加新方法. 思考:那么究竟为什么需要扩展方法呢,为什么不直接修改原有类型呢 ...
- kubernetes集群管理常用命令一
系列目录 我们把集群管理命令分为两个部分,第一部分介绍一些简单的,但是可能是非常常用的命令以及一些平时可能没有碰到的技巧.第二部分将综合前面介绍的工具通过示例来讲解一些更为复杂的命令. 列出集群中所有 ...