Problem Description
An n x n game board is populated with integers, one nonnegative integer per square. The goal is to travel along any legitimate path from the upper left corner to the lower right corner of the board. The integer in any one square dictates how large a step away from that location must be. If the step size would advance travel off the game board, then a step in that particular direction is forbidden. All steps must be either to the right or toward the bottom. Note that a 0 is a dead end which prevents any further progress.

Consider the 4 x 4 board shown in Figure 1, where the solid circle identifies the start position and the dashed circle identifies the target. Figure 2 shows the three paths from the start to the target, with the irrelevant numbers in each removed.

Figure 1

Figure 2

 
Input
The input contains data for one to thirty boards, followed by a final line containing only the integer -1. The data for a board starts with a line containing a single positive integer n, 4 <= n <= 34, which is the number of rows in this board. This is followed by n rows of data. Each row contains n single digits, 0-9, with no spaces between them.

 
Output
The output consists of one line for each board, containing a single integer, which is the number of paths from the upper left corner to the lower right corner. There will be fewer than 2^63 paths for any board.
 

 
Sample Input
4
2331
1213
1231
3110
4
3332
1213
1232
2120
5
11101
01111
11111
11101
11101
-1
 
Sample Output
3
0
7

Hint

Hint

Brute force methods examining every path will likely exceed the allotted time limit.
64-bit integer values are available as "__int64" values using the Visual C/C++ or "long long" values
using GNU C/C++ or "int64" values using Free Pascal compilers.

 

题意:每一个代表下次能横向或者纵向走几步,问从左上走到右下要走几步

思路:一道DP题,dp数组用来存放到达坐标i,j,要走的步数即可,并没要求最大或者最小

#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std; int n,i,j,k;
__int64 dp[40][40];
int map[40][40];
char s[40]; int main()
{
while(~scanf("%d",&n),n+1)
{
for(i = 0; i<n; i++)
{
scanf("%s",s);
for(j = 0; j<n; j++)
{
map[i][j] = s[j]-'0';
}
}
memset(dp,0,sizeof(dp));
dp[0][0] = 1;
for(i = 0; i<n; i++)
{
for(j = 0; j<n; j++)
{
if(!map[i][j] || !dp[i][j])
continue;
if(i+map[i][j]<n)//不越界
dp[i+map[i][j]][j]+=dp[i][j];
if(j+map[i][j]<n)
dp[i][j+map[i][j]]+=dp[i][j];
}
}
printf("%I64d\n",dp[n-1][n-1]);
}
return 0;
}

HDU1208:Pascal's Travels(DP)的更多相关文章

  1. HDU 1208 Pascal's Travels 经典 跳格子的方案数 (dp或者记忆化搜索)

    Pascal's Travels Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Su ...

  2. POJ 2704 Pascal's Travels 【DFS记忆化搜索】

    题目传送门:http://poj.org/problem?id=2704 Pascal's Travels Time Limit: 1000MS   Memory Limit: 65536K Tota ...

  3. hdu 1208 Pascal's Travels

    http://acm.hdu.edu.cn/showproblem.php?pid=1208 #include <cstdio> #include <cstring> #inc ...

  4. 【HDOJ】1208 Pascal's Travels

    记忆化搜索.注意当除右下角0外,其余搜索到0则返回. #include <algorithm> #include <cstdio> #include <cstring&g ...

  5. HOJ题目分类

    各种杂题,水题,模拟,包括简单数论. 1001 A+B 1002 A+B+C 1009 Fat Cat 1010 The Angle 1011 Unix ls 1012 Decoding Task 1 ...

  6. HDU 1208 跳格子题(很经典,可以有很多变形)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1208 Pascal's Travels Time Limit: 2000/1000 MS (Java ...

  7. BZOJ_3049_[Usaco2013 Jan]Island Travels _状压DP+BFS

    BZOJ_3049_[Usaco2013 Jan]Island Travels _状压DP+BFS Description Farmer John has taken the cows to a va ...

  8. hdu1208 dp

    题意:给了一个 n * n 的方格图,要从图的左上角走到右下角 ,每次只能向右或者向下走,走的格数为当前格子上的数字,问共有多少中走法. 一开始我看到之后觉得这题完全可以用记忆化搜索来做,dfs 一遍 ...

  9. Rikka with Travels(2019年杭电多校第九场07题+HDU6686+树形dp)

    目录 题目链接 题意 思路 代码 题目链接 传送门 题意 定义\(L(a,b)\)为结点\(a\)到结点\(b\)的路径上的结点数,问有种\(pair(L(a,b),L(c,d))\)取值,其中结点\ ...

随机推荐

  1. Windows上Nginx的安装教程详解

    一 背景 为了方便本地的开发和验证,于是整理了这一篇Windows上安装Nginx的博文,建议一般学习还是使用Linux,一般正规公司都是在Linux上安装Nginx服务! 本篇内容相对比较简单,如果 ...

  2. SCTF2018-Event easiest web - phpmyadmin

    6月19日的SCTF的web送分题. 打开链接是一个phpmyadmin的登陆界面,尝试用默认账号:root  密码:root登陆 于是直接进去了,首先看下数据库,除了些初始化的库以外,abc这个库比 ...

  3. Linux驱动之USB(个人)

                              USB概述 <USB简介> a:背景 USB是Universal Serial Bus的缩写,是一种全新的,双向同步传输的,支持热插拔的 ...

  4. python标准库--functools.partial

        官方相关地址:https://docs.python.org/3.6/library/functools.html 一.简单介绍: functools模块用于高阶函数:作用于或返回其他函数的函 ...

  5. android onPause OnSavedInstance

    韩梦飞沙  韩亚飞  313134555@qq.com  yue31313  han_meng_fei_sha 活动 的 在暂停时候 这个方法  执行结束后,才会执行 下一个活动的 在创建时候 的那个 ...

  6. BZOJ.1028.[JSOI2007]麻将(贪心)

    题目链接 枚举对子,枚举每张牌,先出完它的刻子,剩下的出顺子.\(O(n^3)\). 不是这样 -> 出完所有刻子,最后出顺子.(日常zz) 优先仨相同的,然后顺子,有一次且一定要用一次机会补顺 ...

  7. BZOJ2278 : [Poi2011]Garbage

    如果两个环相交,那么相交的部分相当于没走. 因此一定存在一种方案,使得里面的环都不相交. 把不需要改变状态的边都去掉,剩下的图若存在奇点则无解. 否则,每找到一个环就将环上的边都删掉,时间复杂度$O( ...

  8. 群晖NAS使用Docker安装迅雷离线下载出现the active key is not valid.

    出现这种情况多半是挂了,也有可能是不稳定的网络,重装Docker镜像可能会解决,只有不断试,没什么好的解决方法.

  9. html5 js实现浏览器全屏

    全屏 var docElm = document.documentElement; //W3C if (docElm.requestFullscreen) { docElm.requestFullsc ...

  10. Codeforces 235E. Number Challenge DP

    dp(a,b,c,p) = sigma ( dp(a/p^i,b/p^j,c/p^k) * ( 1+i+j+k) ) 表示用小于等于p的素数去分解的结果有多少个 E. Number Challenge ...