Problem Description
An n x n game board is populated with integers, one nonnegative integer per square. The goal is to travel along any legitimate path from the upper left corner to the lower right corner of the board. The integer in any one square dictates how large a step away from that location must be. If the step size would advance travel off the game board, then a step in that particular direction is forbidden. All steps must be either to the right or toward the bottom. Note that a 0 is a dead end which prevents any further progress.

Consider the 4 x 4 board shown in Figure 1, where the solid circle identifies the start position and the dashed circle identifies the target. Figure 2 shows the three paths from the start to the target, with the irrelevant numbers in each removed.

Figure 1

Figure 2

 
Input
The input contains data for one to thirty boards, followed by a final line containing only the integer -1. The data for a board starts with a line containing a single positive integer n, 4 <= n <= 34, which is the number of rows in this board. This is followed by n rows of data. Each row contains n single digits, 0-9, with no spaces between them.

 
Output
The output consists of one line for each board, containing a single integer, which is the number of paths from the upper left corner to the lower right corner. There will be fewer than 2^63 paths for any board.
 

 
Sample Input
4
2331
1213
1231
3110
4
3332
1213
1232
2120
5
11101
01111
11111
11101
11101
-1
 
Sample Output
3
0
7

Hint

Hint

Brute force methods examining every path will likely exceed the allotted time limit.
64-bit integer values are available as "__int64" values using the Visual C/C++ or "long long" values
using GNU C/C++ or "int64" values using Free Pascal compilers.

 

题意:每一个代表下次能横向或者纵向走几步,问从左上走到右下要走几步

思路:一道DP题,dp数组用来存放到达坐标i,j,要走的步数即可,并没要求最大或者最小

#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std; int n,i,j,k;
__int64 dp[40][40];
int map[40][40];
char s[40]; int main()
{
while(~scanf("%d",&n),n+1)
{
for(i = 0; i<n; i++)
{
scanf("%s",s);
for(j = 0; j<n; j++)
{
map[i][j] = s[j]-'0';
}
}
memset(dp,0,sizeof(dp));
dp[0][0] = 1;
for(i = 0; i<n; i++)
{
for(j = 0; j<n; j++)
{
if(!map[i][j] || !dp[i][j])
continue;
if(i+map[i][j]<n)//不越界
dp[i+map[i][j]][j]+=dp[i][j];
if(j+map[i][j]<n)
dp[i][j+map[i][j]]+=dp[i][j];
}
}
printf("%I64d\n",dp[n-1][n-1]);
}
return 0;
}

HDU1208:Pascal's Travels(DP)的更多相关文章

  1. HDU 1208 Pascal's Travels 经典 跳格子的方案数 (dp或者记忆化搜索)

    Pascal's Travels Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Su ...

  2. POJ 2704 Pascal's Travels 【DFS记忆化搜索】

    题目传送门:http://poj.org/problem?id=2704 Pascal's Travels Time Limit: 1000MS   Memory Limit: 65536K Tota ...

  3. hdu 1208 Pascal's Travels

    http://acm.hdu.edu.cn/showproblem.php?pid=1208 #include <cstdio> #include <cstring> #inc ...

  4. 【HDOJ】1208 Pascal's Travels

    记忆化搜索.注意当除右下角0外,其余搜索到0则返回. #include <algorithm> #include <cstdio> #include <cstring&g ...

  5. HOJ题目分类

    各种杂题,水题,模拟,包括简单数论. 1001 A+B 1002 A+B+C 1009 Fat Cat 1010 The Angle 1011 Unix ls 1012 Decoding Task 1 ...

  6. HDU 1208 跳格子题(很经典,可以有很多变形)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1208 Pascal's Travels Time Limit: 2000/1000 MS (Java ...

  7. BZOJ_3049_[Usaco2013 Jan]Island Travels _状压DP+BFS

    BZOJ_3049_[Usaco2013 Jan]Island Travels _状压DP+BFS Description Farmer John has taken the cows to a va ...

  8. hdu1208 dp

    题意:给了一个 n * n 的方格图,要从图的左上角走到右下角 ,每次只能向右或者向下走,走的格数为当前格子上的数字,问共有多少中走法. 一开始我看到之后觉得这题完全可以用记忆化搜索来做,dfs 一遍 ...

  9. Rikka with Travels(2019年杭电多校第九场07题+HDU6686+树形dp)

    目录 题目链接 题意 思路 代码 题目链接 传送门 题意 定义\(L(a,b)\)为结点\(a\)到结点\(b\)的路径上的结点数,问有种\(pair(L(a,b),L(c,d))\)取值,其中结点\ ...

随机推荐

  1. java List/ArrayList 解惑

    导读:祖传挖坟派学习方法(宝儿姐友情支持) 第一部分  List简介 第二部分  何为ArrayList 第三部分  代码示例 第四部分  吹牛 如果你急需想搞清楚一些问题可以先看这里的总结 再后续看 ...

  2. Java HashMap 分析四篇连载

     Java的HashMap非常的常用,本篇研究它的实现算法,最后希望计算出内存占用,性能的量化数据,然后得出什么时候使用HashMap,什么时候不能滥用的结论. HashMap实际上是一个数组,数组里 ...

  3. mysql存储引擎innodb、myisam区别

    MyISAM与InnoDB的区别是什么? 1. 存储结构 MyISAM:每个MyISAM在磁盘上存储成三个文件.第一个文件的名字以表的名字开始,扩展名指出文件类型..frm文件存储表定义.数据文件的扩 ...

  4. 快速沃尔什变换与k进制FWT

    这是一篇用来卖萌的文章QAQ 考虑以下三类卷积 \(C_k = \sum \limits_{i \;or\;j = k} A_i * B_j\) \(C_k = \sum \limits_{i\;an ...

  5. 洛谷.3381.[模板]最小费用最大流(zkw)

    题目链接 Update:我好像刚知道多路增广就是zkw费用流.. //1314ms 2.66MB 本题优化明显 #include <queue> #include <cstdio&g ...

  6. lua中的pairs和ipairs差别

    pairs Returns three values: the next function, the table t, and nil, so that the construction for k, ...

  7. 如何利用 jQuery 修改 css 中带有 !important 的样式属性?

    使用 jQuery 修改 css 中带有 !important 的样式属性 外部样式为: div.test { width:auto !important; overflow:auto !import ...

  8. Go - 反射中 函数 和 方法 的调用 - v.Call()

    上一篇文章 说到了 Golang 中的反射的一些基本规则,重点就是文章中最后的三点,但是这篇文章并没有说如何在反射中调用函数和方法,这就是接下来要说的. 反射中调用 函数 众所周知,Golang 中的 ...

  9. Visual Studio断点调试, 无法监视变量, 提示无法计算表达式

    在使用Visual Studio 2012进行断点调试时,对某个变量添加监视,出现"无法计算表达式"的提示. 解决办法:依次点击菜单栏中的"调试"→" ...

  10. TStream实现多表查询

    TStream实现多表查询 function TynFiredac.QuerySQLS(const ASQL, ASQL2: string; AStorageFormat: string = 'bin ...