Problem Description
An n x n game board is populated with integers, one nonnegative integer per square. The goal is to travel along any legitimate path from the upper left corner to the lower right corner of the board. The integer in any one square dictates how large a step away from that location must be. If the step size would advance travel off the game board, then a step in that particular direction is forbidden. All steps must be either to the right or toward the bottom. Note that a 0 is a dead end which prevents any further progress.

Consider the 4 x 4 board shown in Figure 1, where the solid circle identifies the start position and the dashed circle identifies the target. Figure 2 shows the three paths from the start to the target, with the irrelevant numbers in each removed.

Figure 1

Figure 2

 
Input
The input contains data for one to thirty boards, followed by a final line containing only the integer -1. The data for a board starts with a line containing a single positive integer n, 4 <= n <= 34, which is the number of rows in this board. This is followed by n rows of data. Each row contains n single digits, 0-9, with no spaces between them.

 
Output
The output consists of one line for each board, containing a single integer, which is the number of paths from the upper left corner to the lower right corner. There will be fewer than 2^63 paths for any board.
 

 
Sample Input
4
2331
1213
1231
3110
4
3332
1213
1232
2120
5
11101
01111
11111
11101
11101
-1
 
Sample Output
3
0
7

Hint

Hint

Brute force methods examining every path will likely exceed the allotted time limit.
64-bit integer values are available as "__int64" values using the Visual C/C++ or "long long" values
using GNU C/C++ or "int64" values using Free Pascal compilers.

 

题意:每一个代表下次能横向或者纵向走几步,问从左上走到右下要走几步

思路:一道DP题,dp数组用来存放到达坐标i,j,要走的步数即可,并没要求最大或者最小

#include <stdio.h>
#include <string.h>
#include <algorithm>
using namespace std; int n,i,j,k;
__int64 dp[40][40];
int map[40][40];
char s[40]; int main()
{
while(~scanf("%d",&n),n+1)
{
for(i = 0; i<n; i++)
{
scanf("%s",s);
for(j = 0; j<n; j++)
{
map[i][j] = s[j]-'0';
}
}
memset(dp,0,sizeof(dp));
dp[0][0] = 1;
for(i = 0; i<n; i++)
{
for(j = 0; j<n; j++)
{
if(!map[i][j] || !dp[i][j])
continue;
if(i+map[i][j]<n)//不越界
dp[i+map[i][j]][j]+=dp[i][j];
if(j+map[i][j]<n)
dp[i][j+map[i][j]]+=dp[i][j];
}
}
printf("%I64d\n",dp[n-1][n-1]);
}
return 0;
}

HDU1208:Pascal's Travels(DP)的更多相关文章

  1. HDU 1208 Pascal's Travels 经典 跳格子的方案数 (dp或者记忆化搜索)

    Pascal's Travels Time Limit:1000MS     Memory Limit:32768KB     64bit IO Format:%I64d & %I64u Su ...

  2. POJ 2704 Pascal's Travels 【DFS记忆化搜索】

    题目传送门:http://poj.org/problem?id=2704 Pascal's Travels Time Limit: 1000MS   Memory Limit: 65536K Tota ...

  3. hdu 1208 Pascal's Travels

    http://acm.hdu.edu.cn/showproblem.php?pid=1208 #include <cstdio> #include <cstring> #inc ...

  4. 【HDOJ】1208 Pascal's Travels

    记忆化搜索.注意当除右下角0外,其余搜索到0则返回. #include <algorithm> #include <cstdio> #include <cstring&g ...

  5. HOJ题目分类

    各种杂题,水题,模拟,包括简单数论. 1001 A+B 1002 A+B+C 1009 Fat Cat 1010 The Angle 1011 Unix ls 1012 Decoding Task 1 ...

  6. HDU 1208 跳格子题(很经典,可以有很多变形)

    题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=1208 Pascal's Travels Time Limit: 2000/1000 MS (Java ...

  7. BZOJ_3049_[Usaco2013 Jan]Island Travels _状压DP+BFS

    BZOJ_3049_[Usaco2013 Jan]Island Travels _状压DP+BFS Description Farmer John has taken the cows to a va ...

  8. hdu1208 dp

    题意:给了一个 n * n 的方格图,要从图的左上角走到右下角 ,每次只能向右或者向下走,走的格数为当前格子上的数字,问共有多少中走法. 一开始我看到之后觉得这题完全可以用记忆化搜索来做,dfs 一遍 ...

  9. Rikka with Travels(2019年杭电多校第九场07题+HDU6686+树形dp)

    目录 题目链接 题意 思路 代码 题目链接 传送门 题意 定义\(L(a,b)\)为结点\(a\)到结点\(b\)的路径上的结点数,问有种\(pair(L(a,b),L(c,d))\)取值,其中结点\ ...

随机推荐

  1. BZOJ.1023.[SHOI2008]cactus仙人掌图(DP)

    题目链接 类似求树的直径,可以用(类似)树形DP求每个点其子树(在仙人掌上就是诱导子图)最长链.次长链,用每个点子节点不同子树的 max{最长链}+max{次长链} 更新答案.(不需要存次长链,求解过 ...

  2. 简单单层bp神经网络

    单层bp神经网络是解决线性可回归问题的. 该代码是论文:https://medium.com/technology-invention-and-more/how-to-build-a-simple-n ...

  3. ELASTIC制图等高级使用

    基于上一个安装部署的文档后(ELASTIC 5.2部署并收集nginx日志) http://www.cnblogs.com/kerwinC/p/6387073.html 本次带来一些使用的分享. ki ...

  4. ios数据保存

  5. 手机浏览器跳转APP

    背景 对于APP来说,回流分享页是最好的最便宜的也是最病毒式的拉新方式.让新用户去下载APP是重要的.对老用户来说,可以直接调起APP也是提升用户体验和让用户有侵入式体验的重要手段.所以我们一起来看看 ...

  6. 巧用CSS3 :target 伪类制作Dropdown下拉菜单(无JS)

    :target 是CSS3 中新增的一个伪类,用以匹配当前页面的URI中某个标志符的目标元素(比如说当前页面URL下添加#comment就会定位到id=“comment”的位置,俗称锚).CSS3 为 ...

  7. stap 命令

    SystemTap accepts script as command line option or external file, for example: * Command-line script ...

  8. javascript 编辑网页

    javascript:document.body.contentEditable='true';document.designMode='on'; void 0 出处:http://zhidao.ba ...

  9. Delphi来实现一个IP地址输入控件

    unit Unit1; interface uses Windows, Messages, SysUtils, Variants, Classes, Graphics, Controls, Forms ...

  10. Java Dictionary 类存储键值

    字典(Dictionary) 字典(Dictionary) 类是一个抽象类,它定义了键映射到值的数据结构. 当你想要通过特定的键而不是整数索引来访问数据的时候,这时候应该使用Dictionary. 当 ...