1. 二分图匹配(Bipartite Matching)

1.1 匹配(Matching)

Def. Given an undirected graph \(G = (V, E)\), subset of edges \(M ⊆ E\) is a matching if each node appears in at most one edge in \(M\).

定义. 给定一个无向图\(G = (V, E)\), 如果一个边的集合\(M \subseteq E\)并且每个顶点最多只出现在一条\(M\)中的边中, 则称\(M\)是一个匹配.

Max matching problem. Given a graph \(G\), find a max-cardinality matching.

最大匹配问题. 给定一个无向图\(G\), 找到一个集合元素最多的匹配.

1.2 二分图匹配(Bipartite matching)

Def. A graph G is bipartite if the nodes can be partitioned into two subsets \(L\) and \(R\) such that every edge connects a node in \(L\) with a node in \(R\).

Bipartite matching problem. Given a bipartite graph \(G = (L ∪ R, E)\), find a max cardinality matching.

max-flow formulation. Create digraph \(G' = (L ∪ R ∪ \set{s, t}, E')\):

  • Direct all edges from \(L\) to \(R\), and assign infinite (or unit) capacity.
  • Add unit-capacity edges from \(s\) to each node in \(L\).
  • Add unit-capacity edges from each node in \(R\) to \(t\).

Theorem. 1–1 correspondence between matchings of cardinality \(k\) in \(G\) and integral flows of value \(k\) in \(G'\).

1.3 二分图完美匹配(Perfect matchings in bipartite graphs)

Def. Given a graph \(G = (V, E)\), a subset of edges \(M ⊆ E\) is a perfect matching if each node appears in exactly one edge in \(M\).

Notation. Let \(S\) be a subset of nodes, and let \(N(S)\) be the set of nodes adjacent to nodes in \(S\).

Observation. If a bipartite graph \(G = (L ∪ R, E)\) has a perfect matching, then \(|N(S)|\geq|S|\) for all subsets \(S \subseteq L\).

Theorem. [Frobenius 1917, Hall 1935] Let \(G = (L ∪ R, E)\) be a bipartite graph with \(|L| = |R|\). Then, graph G has a perfect matching iff \(|N(S)|\geq|S|\) for all subsets \(S \subseteq L\).

2. 不相交路径(Edge-disjoint Paths)

2.1 有向图中的不相交路径(Edge-disjoint Paths in Directed Graphs

2.1.1 问题描述(Problem Description)

Def. Two paths are edge-disjoint if they have no edge in common.

定义. 如果两个路径没有公共边, 则认为他们是不相交路径

Edge-disjoint paths problem. Given a digraph \(G = (V, E)\) and two nodes \(s\) and \(t\), find the max number of edge-disjoint \(s↝t\) paths.

不想交路径问题 给定一个有向图\(G = (V, E)\)和两个节点\(s\), \(t\), 找到其间不相交路径的最大数目.

2.1.2 解法(Solution)

Max-flow formulation. Assign unit capacity to every edge, and define it as \(G^\prime\)

Integral flow theorem. If each edge in a flow network has integral capacity, then there exists an integral maximal flow.

1–1 correspondence Theorem. 1–1 correspondence between k edge-disjoint \(s↝t\) paths in \(G\) and integral flows of value \(k\) in \(G'\).

  • Integral flow theorem. \(\Rightarrow\) there exists a max flow \(f^*\) in \(G^\prime\) that is integral.
  • 1–1 correspondence Theorem. \(\Rightarrow\) \(f^*\) corresponds to max number of edge-disjoint \(s↝t\) paths in \(G\).

2.1.3 补充(Addition)

Menger's Theorem. The max number of edge-disjoint \(s↝t\) paths equals the min number of edges whose removal disconnects \(t\) from \(s\).

2.2 无向图中的不相交路径(Edge-disjoint Paths in Undirected Graphs)

2.2.1 问题描述(Problem Description)

Given a graph \(G = (V, E)\) and two nodes \(s\) and \(t\), find the max number of edge-disjoint \(s↝t\) paths.

2.2.2 解法(Solution)

Max-flow formulation. Replace each edge with two antiparallel edges and assign unit capacity to every edge.

Observation. Two paths \(P1\) and \(P2\) may be edge-disjoint in the digraph but not edge-disjoint in the undirected graph

Lemma. In any flow network, there exists a maximum flow \(f\) in which for each pair of antiparallel edges \(e\) and \(e'\) : either \(f(e) = 0\) or \(f (e') = 0\) or both. Moreover, integrality theorem still holds.

Theorem. Max number of edge-disjoint \(s↝t\) paths = value of max flow.

3. 最大流问题扩展(Extensions to Max Flow)

3.1 多源点多汇点(Multiple sources and sinks)

Def. Given a digraph \(G = (V, E)\) with edge capacities \(c(e) ≥ 0\) and multiple source nodes and multiple sink nodes, find max flow that can be sent from the source nodes to the sink nodes.

max-flow formulation. Define new digraph as \(G'\):

  • Add a new source node \(s\) and sink node \(t\).
  • For each original source node \(s_i\) add edge \((s, s_i)\) with capacity \(\infty\).
  • For each original sink node \(t_j\), add edge \((t_j, t)\) with capacity \(\infty\).

Claim. 1–1 correspondence between flows in \(G\) and \(G'\).

3.2 循环(Circulation)

3.2.1 供给需求循环(Circulation with supplies and demands)

Def. Given a digraph \(G = (V, E)\) with edge capacities \(c(e) ≥ 0\) and node demands \(d(v)\), a circulation is a function \(f(e)\) that satisfies:

  • For each \(e\in E\): \(0\leq f(e)\leq c(e)\)
  • For each \(v\in V\): \(\textstyle \sum_{e \space in \space to \space v}f(e) - \sum_{e \space out \space of \space v}f(e)=d(v)\)

max-flow formulation. Define new digraph as \(G'\):

  • Add new source \(s\) and sink \(t\).
  • For each \(v\) with \(d(v) < 0\), add \(edge (s, v)\) with capacity \(−d(v)\).
  • For each \(v\) with \(d(v) > 0\), add \(edge (v, t)\) with capacity \(d(v)\).

Claim. \(G\) has circulation iff \(G'\) has max flow of value \(\displaystyle D = \sum_{v:d(v)>0}d(v) = \sum_{v:d(v)<0}-d(v)\)

3.2.2 带下界的供给需求循环(Circulation with supplies, demands, and lower bounds

Def. Given a digraph \(G = (V, E)\) with edge capacities \(c(e) ≥ 0\), lower bounds ℓ(e) ≥ 0, and node demands \(d(v)\), a circulation is a function \(f(e)\) that satisfies:

  • For each \(e\in E\): \(\mathscr l(e)\leq f(e)\leq c(e)\)
  • For each \(v\in V\): \(\textstyle \sum_{\text{e in to v}}f(e) - \sum_{\text{e out of v}}f(e)=d(v)\)

Max-flow formulation. Model lower bounds as circulation with demands.

Theorem. There exists a circulation in \(G\) iff there exists a circulation in \(G'\).

Moreover, if all demands, capacities, and lower bounds in \(G\) are integers, then there exists a circulation in \(G\) that is integer-valued.

4. 调查设计问题(Survey Design)

4.1 问题描述(Problem Description)

  • Design survey asking \(n_1\) consumers about \(n_2\) products.
  • Can survey consumer \(i\) about product \(j\) only if they own it.
  • Ask consumer \(i\) between \(c_i\) and \(c_i'\) questions.
  • Ask between \(p_j\) and \(p_j'\) consumers about product \(j\).

Goal. Design a survey that meets these specs, if possible.

4.2 解法(Solution)

Max-flow formulation. Model as a circulation problem with lower bounds (all supplies and demands are 0):

  • Add edge \((i, j)\) if consumer \(i\) owns product \(j\).
  • Add edge from s to consumer \(j\).
  • Add edge from product \(i\) to \(t\).
  • Add edge from \(t\) to \(s\).
  • All demands = 0.

Integer circulation \(\Leftrightarrow\) feasible survey design.

最大流应用(Maximum Flow Application)的更多相关文章

  1. [Algorithm] Maximum Flow

    Ref MIT: lecture-13-incremental-improvement-max-flow-min-cut/ Ford Fulkerson algorithm for finding m ...

  2. 前端必须了解的布局常识:普通流(normal flow)

    目录 一.概述 二.块级元素和内联元素 常见的块级元素 BFC 常见的行内元素 IFC 三.哪些情况会脱离普通流 浮动 绝对定位 固定定位 display:none 四.总结 五.参考资料 一.概述 ...

  3. [转载]Maximum Flow: Augmenting Path Algorithms Comparison

    https://www.topcoder.com/community/data-science/data-science-tutorials/maximum-flow-augmenting-path- ...

  4. 网络流--最大流--HDU 3549 Flow Problem

    题目链接 Problem Description Network flow is a well-known difficult problem for ACMers. Given a graph, y ...

  5. SPOJ 4110 Fast Maximum Flow (最大流模板)

    题目大意: 无向图,求最大流. 算法讨论: Dinic可过.终于我的常数还是太大.以后要注意下了. #include <cstdio> #include <cstring> # ...

  6. [图论]最大流问题(Maximum flow)的定义

    首先定义网络(network)N =(V,E), V表示顶点(Vertices)集合, E表示边(Edges)集合. s,t是V中的两个顶点,分别表示网络N中的源点(source)和汇点(sink). ...

  7. Dynamics CRM2016 业务流程之Task Flow(一)

    Task Flow 属于CRM移动端的特性,如果在项目实施中用不到CRM自带的APP或者对自APP不感冒的,那就没有往下看的必要了,移步吧. 该功能默认是不开启的,需要我们去系统设置中开启它,打勾,选 ...

  8. Maximum Flow and Minimum Cut

    最大流最小割 Introduction Mincut Problem 最小割问题,输入是带权有向图,有一个源点 s(source)和一个汇点 t(target),边的权重在这里称作容量(capacit ...

  9. Maximum Flow Exhaustion of Paths Algorithm

    参考youtube上的视频: http://www.youtube.com/watch?v=sxyCzzUuXLo 笔记: 只要是那条路上为0后,就不会再走那条路. 所以没有S->U->W ...

  10. Dynamics CRM2016 业务流程之Task Flow(二)

    接上篇,Page页设置完后,按照业务流程管理也可以继续设置Insert page after branch 或者 Add branch,我这里选择后者,并设置了条件,如果Pipeline Phase ...

随机推荐

  1. python爬虫实战——自动下载百度图片(文末附源码)

    用Python制作一个下载图片神器 前言 这个想法是怎么来的? 很简单,就是不想一张一张的下载图片,嫌太慢. 在很久很久以前,我比较喜欢收集各种动漫的壁纸,作为一个漫迷,自然是能收集多少就收集多少.小 ...

  2. Markdown基本使用教程

    Markdown学习 标题 一个'#+空格'是一级标题,'##+空格'二级标题 字体 hello: 斜体'+内容+' hello:加粗'+内容+' hello hello 引入 引用来源 分割线 '三 ...

  3. 【python】绘图坐标轴标题中包含上标或下标

    plt.ylabel("流量($\mathregular{m^3}$/s)")          #绘图坐标轴添加上标$\mathregular{m^3}$,若是下标m_3 不加m ...

  4. 浙大版《C语言程序设计(第3版)》题目集 习题3-1 比较大小(10 分)

    本题要求将输入的任意3个整数从小到大输出. 输入格式: 输入在一行中给出3个整数,其间以空格分隔. 输出格式: 在一行中将3个整数从小到大输出,其间以"->"相连. 输入样例 ...

  5. Treewidget节点的增加

    父节点的创建 // 隐藏QTreewidget标题头 ui->treeWidget->header()->hide(); // 实现Treewidget父节点的挂载 // 创建存放Q ...

  6. 修改mysql root密码,在workbench中导入.sql文件

    修改mysql root密码: 1.如果没有配置环境变量,在 \Program Files\MySQL\MySQL Server 8.0\bin 文件下 Shit+右键打开 Powershell 窗口 ...

  7. ArrayList 的toArray的转换数组方法的注意事项

    ArrayList 的toArray的转换数组方法的注意事项 toArray()一共有两个方法 toArray(T[] a) 和toArray() 源码是 进行使用toArray()方法时候,使用 ( ...

  8. Unity学习笔记——坐标转换(1)

    1.Center与Pivot的区别 Pivot是模型坐标轴的真实位置,将辅助图标定位在网格的实际轴心点. Center是模型渲染边界的中心. 当包含子物体时,Pivaot模式辅助图标在物体的实际轴心点 ...

  9. 表格CSS

    .tab{border:1px solid #cad9ea;color:#666;} .tab th {background-image: url(th_bg1.gif);background-rep ...

  10. C++ vector的emplace_back函数

    C++ STL的vector相信大家一定都知道,它是一个一般用来当做可变长度列表的类.在C++11之前,一般给vector插入新元素用得都是push_back函数,比如下面这样: std::vecto ...