• 背景介绍

    Neural Network之模型复杂度主要取决于优化参数个数与参数变化范围. 优化参数个数可手动调节, 参数变化范围可通过正则化技术加以限制. 本文从参数变化范围出发, 以Batch Normalization技术为例, 简要演示Batch Normalization批归一化对Neural Network模型复杂度的影响.

  • 算法特征

    ①. 重整批特征之均值与方差; ②. 以批特征均值与方差之凸组合估计整体特征均值与方差

  • 算法推导

    以批数据集\(X_B = \{x^{(1)}, x^{(2)}, \cdots, x^{(n)}\}\)为例, 重整前均值与标准偏差分别如下

    \[\begin{align*}
    \mu_B &= \frac{1}{n}\sum_i x^{(i)} \\
    \sigma_B &= \sqrt{\frac{1}{n}\sum_i (x^{(i)} - \mu_B)^2 + \epsilon}
    \end{align*}
    \]

    其中, \(\epsilon\)代表足够小正数, 确保标准偏差非零.

    对此批数据集进行如下重整,

    \[x_{\mathrm{new}}^{(i)} = \sigma_{B, \mathrm{new}}\frac{x^{(i)} - \mu_B}{\sigma_B} + \mu_{B, \mathrm{new}}
    \]

    其中, \(\mu_{B,\mathrm{new}}\)与\(\sigma_{B, \mathrm{new}}\)为待优化参数, 分别代表批数据集重整后均值与标准偏差. 以此手段构建线性层, 重置了数据特征之分布范围, 调整了模型复杂度.

    在训练过程中, 采用如下凸组合估计整体特征重整前均值与标准偏差,

    \[\begin{align*}
    \mu &= \lambda\mu + (1 - \lambda)\mu_{B} \\
    \sigma &= \lambda\sigma + (1-\lambda)\sigma_{B}
    \end{align*}
    \]

    其中, \(\lambda\)代表权重参数. 在测试过程中, 此\(\mu\)与\(\sigma\)用于替代\(\mu_B\)与\(\sigma_B\).

  • 数据、模型与损失函数

    此处采用与Neural Network模型复杂度之Dropout - Python实现相同的数据、模型与损失函数, 并在隐藏层取激活函数tanh之前引入Batch Normalization层.

  • 代码实现

    本文拟将中间隐藏层节点数设置为300, 使模型具备较高复杂度. 通过添加Batch Normalization层与否, 观察Batch Normalization对模型收敛的影响.

    code
    import numpy
    import torch
    from torch import nn
    from torch import optim
    from torch.utils import data
    from matplotlib import pyplot as plt numpy.random.seed(0)
    torch.random.manual_seed(0) # 获取数据与封装数据
    def xFunc(r, g, b):
    x = r + 2 * g + 3 * b
    return x def yFunc(r, g, b):
    y = r ** 2 + 2 * g ** 2 + 3 * b ** 2
    return y def lvFunc(r, g, b):
    lv = -3 * r - 4 * g - 5 * b
    return lv class GeneDataset(data.Dataset): def __init__(self, rRange=[-1, 1], gRange=[-1, 1], bRange=[-1, 1], num=100,\
    transform=None, target_transform=None):
    self.__rRange = rRange
    self.__gRange = gRange
    self.__bRange = bRange
    self.__num = num
    self.__transform = transform
    self.__target_transform = target_transform self.__X = self.__build_X()
    self.__Y_ = self.__build_Y_() def __build_X(self):
    rArr = numpy.random.uniform(*self.__rRange, (self.__num, 1))
    gArr = numpy.random.uniform(*self.__gRange, (self.__num, 1))
    bArr = numpy.random.uniform(*self.__bRange, (self.__num, 1))
    X = numpy.hstack((rArr, gArr, bArr))
    return X def __build_Y_(self):
    rArr = self.__X[:, 0:1]
    gArr = self.__X[:, 1:2]
    bArr = self.__X[:, 2:3]
    xArr = xFunc(rArr, gArr, bArr)
    yArr = yFunc(rArr, gArr, bArr)
    lvArr = lvFunc(rArr, gArr, bArr)
    Y_ = numpy.hstack((xArr, yArr, lvArr))
    return Y_ def __len__(self):
    return self.__num def __getitem__(self, idx):
    x = self.__X[idx]
    y_ = self.__Y_[idx]
    if self.__transform:
    x = self.__transform(x)
    if self.__target_transform:
    y_ = self.__target_transform(y_)
    return x, y_ # 构建模型
    class Linear(nn.Module): def __init__(self, in_features, out_features, bias=True):
    super(Linear, self).__init__() self.__in_features = in_features
    self.__out_features = out_features
    self.__bias = bias self.weight = nn.Parameter(torch.randn((in_features, out_features), dtype=torch.float64))
    self.bias = nn.Parameter(torch.randn((out_features,), dtype=torch.float64)) def forward(self, X):
    X = torch.matmul(X, self.weight)
    if self.__bias:
    X += self.bias
    return X class Tanh(nn.Module): def __init__(self):
    super(Tanh, self).__init__() def forward(self, X):
    X = torch.tanh(X)
    return X class BatchNorm(nn.Module): def __init__(self, num_features, lamda=0.9, epsilon=1.e-6):
    super(BatchNorm, self).__init__() self.__num_features = num_features
    self.__lamda = lamda
    self.__epsilon = epsilon
    self.training = True self.__mu_new = nn.parameter.Parameter(torch.zeros((num_features,)))
    self.__sigma_new = nn.parameter.Parameter(torch.ones((num_features,)))
    self.__mu = torch.zeros((num_features,))
    self.__sigma = torch.ones((num_features,)) def forward(self, X):
    if self.training:
    mu_B = torch.mean(X, axis=0)
    sigma_B = torch.sqrt(torch.var(X, axis=0) + self.__epsilon)
    X = (X - mu_B) / sigma_B
    X = X * self.__sigma_new + self.__mu_new self.__mu = self.__lamda * self.__mu + (1 - self.__lamda) * mu_B.data
    self.__sigma = self.__lamda * self.__sigma + (1 - self.__lamda) * sigma_B.data
    return X
    else:
    X = (X - self.__mu) / self.__sigma
    X = X * self.__sigma_new + self.__mu_new
    return X class MLP(nn.Module): def __init__(self, hidden_features=50, is_batch_norm=True):
    super(MLP, self).__init__() self.__hidden_features = hidden_features
    self.__is_batch_norm = is_batch_norm
    self.__in_features = 3
    self.__out_features = 3 self.lin1 = Linear(self.__in_features, self.__hidden_features)
    if self.__is_batch_norm:
    self.bn1 = BatchNorm(self.__hidden_features)
    self.tanh = Tanh()
    self.lin2 = Linear(self.__hidden_features, self.__out_features) def forward(self, X):
    X = self.lin1(X)
    if self.__is_batch_norm:
    X = self.bn1(X)
    X = self.tanh(X)
    X = self.lin2(X)
    return X # 构建损失函数
    class MSE(nn.Module): def forward(self, Y, Y_):
    loss = torch.sum((Y - Y_) ** 2)
    return loss # 训练单元与测试单元
    def train_epoch(trainLoader, model, loss_fn, optimizer):
    model.train(True) loss = 0
    with torch.enable_grad():
    for X, Y_ in trainLoader:
    optimizer.zero_grad() Y = model(X)
    lossVal = loss_fn(Y, Y_)
    lossVal.backward()
    optimizer.step() loss += lossVal.item()
    loss /= len(trainLoader.dataset)
    return loss def test_epoch(testLoader, model, loss_fn):
    model.train(False) loss = 0
    with torch.no_grad():
    for X, Y_ in testLoader:
    Y = model(X)
    lossVal = loss_fn(Y, Y_)
    loss += lossVal.item()
    loss /= len(testLoader.dataset)
    return loss # 进行训练与测试
    class BatchNormShow(object): def __init__(self, trainLoader, testLoader):
    self.__trainLoader = trainLoader
    self.__testLoader = testLoader def train(self, epochs=100):
    torch.random.manual_seed(0)
    model_BN = MLP(300, True)
    loss_BN = MSE()
    optimizer_BN = optim.Adam(model_BN.parameters(), 0.001) torch.random.manual_seed(0)
    model_NoBN = MLP(300, False)
    loss_NoBN = MSE()
    optimizer_NoBN = optim.Adam(model_NoBN.parameters(), 0.001) trainLoss_BN, testLoss_BN = self.__train_model(self.__trainLoader, self.__testLoader, \
    model_BN, loss_BN, optimizer_BN, epochs)
    trainLoss_NoBN, testLoss_NoBN = self.__train_model(self.__trainLoader, self.__testLoader, \
    model_NoBN, loss_NoBN, optimizer_NoBN, epochs) fig = plt.figure(figsize=(5, 4))
    ax1 = fig.add_subplot()
    ax1.plot(range(epochs), trainLoss_BN, "r-", lw=1, label="train with BN")
    ax1.plot(range(epochs), testLoss_BN, "r--", lw=1, label="test with BN")
    ax1.plot(range(epochs), trainLoss_NoBN, "b-", lw=1, label="train without BN")
    ax1.plot(range(epochs), testLoss_NoBN, "b--", lw=1, label="test without BN")
    ax1.legend()
    ax1.set(xlabel="epoch", ylabel="loss", yscale="log")
    fig.tight_layout()
    fig.savefig("batch_norm.png", dpi=100)
    plt.show() def __train_model(self, trainLoader, testLoader, model, loss_fn, optimizer, epochs):
    trainLossList = list()
    testLossList = list() for epoch in range(epochs):
    trainLoss = train_epoch(trainLoader, model, loss_fn, optimizer)
    testLoss = test_epoch(testLoader, model, loss_fn)
    trainLossList.append(trainLoss)
    testLossList.append(testLoss)
    print(epoch, trainLoss, testLoss)
    return trainLossList, testLossList if __name__ == "__main__":
    trainData = GeneDataset([-1, 1], [-1, 1], [-1, 1], num=1000, \
    transform=torch.tensor, target_transform=torch.tensor)
    testData = GeneDataset([-1, 1], [-1, 1], [-1, 1], num=300, \
    transform=torch.tensor, target_transform=torch.tensor)
    trainLoader = data.DataLoader(trainData, batch_size=len(trainData), shuffle=False)
    testLoader = data.DataLoader(testData, batch_size=len(testData), shuffle=False)
    bnsObj = BatchNormShow(trainLoader, testLoader)
    epochs = 10000
    bnsObj.train(epochs)
  • 结果展示

    可以看到, Batch Normalization使得模型具备更快的收敛速度, 不过对最终收敛值影响不大, 即在上述重整手段下模型复杂度变化不大.

  • 使用建议

    ①. Batch Normalization改变了特征分布, 具备调整模型复杂度的能力;

    ②. Batch Normalization使特征分布在原点附近, 不容易出现梯度消失或梯度爆炸;

    ③. Batch Normalization适用于神经网络全连接层与卷积层.

  • 参考文档

    ①. 动手学深度学习 - 李牧

Neural Network模型复杂度之Batch Normalization - Python实现的更多相关文章

  1. 吴恩达深度学习笔记(十二)—— Batch Normalization

        主要内容: 一.Normalizing activations in a network 二.Fitting Batch Norm in a neural network 三.Why does ...

  2. Batch Normalization详解

    目录 动机 单层视角 多层视角 什么是Batch Normalization Batch Normalization的反向传播 Batch Normalization的预测阶段 Batch Norma ...

  3. [CS231n-CNN] Training Neural Networks Part 1 : activation functions, weight initialization, gradient flow, batch normalization | babysitting the learning process, hyperparameter optimization

    课程主页:http://cs231n.stanford.edu/   Introduction to neural networks -Training Neural Network ________ ...

  4. [C2W3] Improving Deep Neural Networks : Hyperparameter tuning, Batch Normalization and Programming Frameworks

    第三周:Hyperparameter tuning, Batch Normalization and Programming Frameworks 调试处理(Tuning process) 目前为止, ...

  5. 图像分类(二)GoogLenet Inception_v2:Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift

    Inception V2网络中的代表是加入了BN(Batch Normalization)层,并且使用 2个 3*3卷积替代 1个5*5卷积的改进版,如下图所示: 其特点如下: 学习VGG用2个 3* ...

  6. 课程二(Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization),第三周(Hyperparameter tuning, Batch Normalization and Programming Frameworks) —— 2.Programming assignments

    Tensorflow Welcome to the Tensorflow Tutorial! In this notebook you will learn all the basics of Ten ...

  7. Batch normalization:accelerating deep network training by reducing internal covariate shift的笔记

    说实话,这篇paper看了很久,,到现在对里面的一些东西还不是很好的理解. 下面是我的理解,当同行看到的话,留言交流交流啊!!!!! 这篇文章的中心点:围绕着如何降低  internal covari ...

  8. Deep Learning 27:Batch normalization理解——读论文“Batch normalization: Accelerating deep network training by reducing internal covariate shift ”——ICML 2015

    这篇经典论文,甚至可以说是2015年最牛的一篇论文,早就有很多人解读,不需要自己着摸,但是看了论文原文Batch normalization: Accelerating deep network tr ...

  9. 论文笔记:Person Re-identification with Deep Similarity-Guided Graph Neural Network

    Person Re-identification with Deep Similarity-Guided Graph Neural Network 2018-07-27 17:41:45 Paper: ...

  10. 论文翻译:2020_WaveCRN: An efficient convolutional recurrent neural network for end-to-end speech enhancement

    论文地址:用于端到端语音增强的卷积递归神经网络 论文代码:https://github.com/aleXiehta/WaveCRN 引用格式:Hsieh T A, Wang H M, Lu X, et ...

随机推荐

  1. .net core 读取配置文件的几种方式

    一.Json配置文件 1.这里的配置文件指的是下图 2.json配置文件示例 { "Logging": { "LogLevel": { "Defaul ...

  2. NETAPP FAS2720初始化配置

    配置前准备 1.管理地址(必须)3个:1个集群管理地址,2个节点管理地址2.SP地址2个:2个底层管理地址,相当于服务器BMC地址,配置完成后可以远程进行系统重装等操作3.DNS地址:使用CIFS需要 ...

  3. JZOJ 5174

    \(\text{Problem}\) 给你一张 \(n\) 个结点,\(m\) 条边的无向图,每个结点都有一个整数权值.你需要执行一系列操作.操作分为三种,如下表所示. 操作 备注 \(\text{D ...

  4. JZOJ 3252. 【GDOI三校联考】炸弹

    思路 注:上图只是个例子,其实建图时 \(5\) 是不会连向 \(6\) 的 \(Code\) #include<cstdio> #include<cstring> #incl ...

  5. Wayland比X11慢的若干解决办法

    1. 直接解决 1.1 kernel设置问题 有人测试树莓派上树莓派上Manjaro使用X11性能好于Wayland,下面解释说是kernel问题,并给出了一些修改建议,详见: X11 vs Wayl ...

  6. JavaScript之this、let、const关键字

    各场景下的this this的意思:百度翻译为:这.这么.本 在JavaScript中,表示当前对象的引用关键字,没有特殊含义. 在一个方法中,this表示该方法所属的对象. 如果单独使用,this表 ...

  7. Visual Studio Code C / C++ 语言环境配置的历程

    前言 从大一开始学习c++用的dev-c++,后来看到老师用的是vs  code,实在是馋它的颜值便去下了vs  2017.至于为什么下载vs 2017呢?是因为下载的时候我以为他们是一样的,便下了v ...

  8. SAP VL02N 字段不允许编辑

    METHOD if_ex_le_shp_delivery_proc~change_field_attributes. data: ls_field_attributes type shp_screen ...

  9. 解决MySQL5.5MySQLInstanceConfig最后一步setting报错

    问题描述 在安装过MySQL(或已卸载)的电脑中重新安装MySQL5.5, 在安装最后一项中Processing configuration中最后一项配置失败: 问题解决: 首先关于卸载: 安装时候若 ...

  10. Neo4j插件安装

    Neo4j插件安装 Author:wss Date:2022.6.9 Topic:Neo4j插件安装 一.前言 昨天再次安装Apoc插件,又去找之前看的教程,有些地方不够清晰要几个教程对比着看,想到可 ...