Neural Network模型复杂度之Batch Normalization - Python实现
背景介绍
Neural Network之模型复杂度主要取决于优化参数个数与参数变化范围. 优化参数个数可手动调节, 参数变化范围可通过正则化技术加以限制. 本文从参数变化范围出发, 以Batch Normalization技术为例, 简要演示Batch Normalization批归一化对Neural Network模型复杂度的影响.算法特征
①. 重整批特征之均值与方差; ②. 以批特征均值与方差之凸组合估计整体特征均值与方差算法推导
以批数据集\(X_B = \{x^{(1)}, x^{(2)}, \cdots, x^{(n)}\}\)为例, 重整前均值与标准偏差分别如下\[\begin{align*}
\mu_B &= \frac{1}{n}\sum_i x^{(i)} \\
\sigma_B &= \sqrt{\frac{1}{n}\sum_i (x^{(i)} - \mu_B)^2 + \epsilon}
\end{align*}
\]其中, \(\epsilon\)代表足够小正数, 确保标准偏差非零.
对此批数据集进行如下重整,\[x_{\mathrm{new}}^{(i)} = \sigma_{B, \mathrm{new}}\frac{x^{(i)} - \mu_B}{\sigma_B} + \mu_{B, \mathrm{new}}
\]其中, \(\mu_{B,\mathrm{new}}\)与\(\sigma_{B, \mathrm{new}}\)为待优化参数, 分别代表批数据集重整后均值与标准偏差. 以此手段构建线性层, 重置了数据特征之分布范围, 调整了模型复杂度.
在训练过程中, 采用如下凸组合估计整体特征重整前均值与标准偏差,\[\begin{align*}
\mu &= \lambda\mu + (1 - \lambda)\mu_{B} \\
\sigma &= \lambda\sigma + (1-\lambda)\sigma_{B}
\end{align*}
\]其中, \(\lambda\)代表权重参数. 在测试过程中, 此\(\mu\)与\(\sigma\)用于替代\(\mu_B\)与\(\sigma_B\).
数据、模型与损失函数
此处采用与Neural Network模型复杂度之Dropout - Python实现相同的数据、模型与损失函数, 并在隐藏层取激活函数tanh之前引入Batch Normalization层.代码实现
本文拟将中间隐藏层节点数设置为300, 使模型具备较高复杂度. 通过添加Batch Normalization层与否, 观察Batch Normalization对模型收敛的影响.code
import numpy
import torch
from torch import nn
from torch import optim
from torch.utils import data
from matplotlib import pyplot as plt numpy.random.seed(0)
torch.random.manual_seed(0) # 获取数据与封装数据
def xFunc(r, g, b):
x = r + 2 * g + 3 * b
return x def yFunc(r, g, b):
y = r ** 2 + 2 * g ** 2 + 3 * b ** 2
return y def lvFunc(r, g, b):
lv = -3 * r - 4 * g - 5 * b
return lv class GeneDataset(data.Dataset): def __init__(self, rRange=[-1, 1], gRange=[-1, 1], bRange=[-1, 1], num=100,\
transform=None, target_transform=None):
self.__rRange = rRange
self.__gRange = gRange
self.__bRange = bRange
self.__num = num
self.__transform = transform
self.__target_transform = target_transform self.__X = self.__build_X()
self.__Y_ = self.__build_Y_() def __build_X(self):
rArr = numpy.random.uniform(*self.__rRange, (self.__num, 1))
gArr = numpy.random.uniform(*self.__gRange, (self.__num, 1))
bArr = numpy.random.uniform(*self.__bRange, (self.__num, 1))
X = numpy.hstack((rArr, gArr, bArr))
return X def __build_Y_(self):
rArr = self.__X[:, 0:1]
gArr = self.__X[:, 1:2]
bArr = self.__X[:, 2:3]
xArr = xFunc(rArr, gArr, bArr)
yArr = yFunc(rArr, gArr, bArr)
lvArr = lvFunc(rArr, gArr, bArr)
Y_ = numpy.hstack((xArr, yArr, lvArr))
return Y_ def __len__(self):
return self.__num def __getitem__(self, idx):
x = self.__X[idx]
y_ = self.__Y_[idx]
if self.__transform:
x = self.__transform(x)
if self.__target_transform:
y_ = self.__target_transform(y_)
return x, y_ # 构建模型
class Linear(nn.Module): def __init__(self, in_features, out_features, bias=True):
super(Linear, self).__init__() self.__in_features = in_features
self.__out_features = out_features
self.__bias = bias self.weight = nn.Parameter(torch.randn((in_features, out_features), dtype=torch.float64))
self.bias = nn.Parameter(torch.randn((out_features,), dtype=torch.float64)) def forward(self, X):
X = torch.matmul(X, self.weight)
if self.__bias:
X += self.bias
return X class Tanh(nn.Module): def __init__(self):
super(Tanh, self).__init__() def forward(self, X):
X = torch.tanh(X)
return X class BatchNorm(nn.Module): def __init__(self, num_features, lamda=0.9, epsilon=1.e-6):
super(BatchNorm, self).__init__() self.__num_features = num_features
self.__lamda = lamda
self.__epsilon = epsilon
self.training = True self.__mu_new = nn.parameter.Parameter(torch.zeros((num_features,)))
self.__sigma_new = nn.parameter.Parameter(torch.ones((num_features,)))
self.__mu = torch.zeros((num_features,))
self.__sigma = torch.ones((num_features,)) def forward(self, X):
if self.training:
mu_B = torch.mean(X, axis=0)
sigma_B = torch.sqrt(torch.var(X, axis=0) + self.__epsilon)
X = (X - mu_B) / sigma_B
X = X * self.__sigma_new + self.__mu_new self.__mu = self.__lamda * self.__mu + (1 - self.__lamda) * mu_B.data
self.__sigma = self.__lamda * self.__sigma + (1 - self.__lamda) * sigma_B.data
return X
else:
X = (X - self.__mu) / self.__sigma
X = X * self.__sigma_new + self.__mu_new
return X class MLP(nn.Module): def __init__(self, hidden_features=50, is_batch_norm=True):
super(MLP, self).__init__() self.__hidden_features = hidden_features
self.__is_batch_norm = is_batch_norm
self.__in_features = 3
self.__out_features = 3 self.lin1 = Linear(self.__in_features, self.__hidden_features)
if self.__is_batch_norm:
self.bn1 = BatchNorm(self.__hidden_features)
self.tanh = Tanh()
self.lin2 = Linear(self.__hidden_features, self.__out_features) def forward(self, X):
X = self.lin1(X)
if self.__is_batch_norm:
X = self.bn1(X)
X = self.tanh(X)
X = self.lin2(X)
return X # 构建损失函数
class MSE(nn.Module): def forward(self, Y, Y_):
loss = torch.sum((Y - Y_) ** 2)
return loss # 训练单元与测试单元
def train_epoch(trainLoader, model, loss_fn, optimizer):
model.train(True) loss = 0
with torch.enable_grad():
for X, Y_ in trainLoader:
optimizer.zero_grad() Y = model(X)
lossVal = loss_fn(Y, Y_)
lossVal.backward()
optimizer.step() loss += lossVal.item()
loss /= len(trainLoader.dataset)
return loss def test_epoch(testLoader, model, loss_fn):
model.train(False) loss = 0
with torch.no_grad():
for X, Y_ in testLoader:
Y = model(X)
lossVal = loss_fn(Y, Y_)
loss += lossVal.item()
loss /= len(testLoader.dataset)
return loss # 进行训练与测试
class BatchNormShow(object): def __init__(self, trainLoader, testLoader):
self.__trainLoader = trainLoader
self.__testLoader = testLoader def train(self, epochs=100):
torch.random.manual_seed(0)
model_BN = MLP(300, True)
loss_BN = MSE()
optimizer_BN = optim.Adam(model_BN.parameters(), 0.001) torch.random.manual_seed(0)
model_NoBN = MLP(300, False)
loss_NoBN = MSE()
optimizer_NoBN = optim.Adam(model_NoBN.parameters(), 0.001) trainLoss_BN, testLoss_BN = self.__train_model(self.__trainLoader, self.__testLoader, \
model_BN, loss_BN, optimizer_BN, epochs)
trainLoss_NoBN, testLoss_NoBN = self.__train_model(self.__trainLoader, self.__testLoader, \
model_NoBN, loss_NoBN, optimizer_NoBN, epochs) fig = plt.figure(figsize=(5, 4))
ax1 = fig.add_subplot()
ax1.plot(range(epochs), trainLoss_BN, "r-", lw=1, label="train with BN")
ax1.plot(range(epochs), testLoss_BN, "r--", lw=1, label="test with BN")
ax1.plot(range(epochs), trainLoss_NoBN, "b-", lw=1, label="train without BN")
ax1.plot(range(epochs), testLoss_NoBN, "b--", lw=1, label="test without BN")
ax1.legend()
ax1.set(xlabel="epoch", ylabel="loss", yscale="log")
fig.tight_layout()
fig.savefig("batch_norm.png", dpi=100)
plt.show() def __train_model(self, trainLoader, testLoader, model, loss_fn, optimizer, epochs):
trainLossList = list()
testLossList = list() for epoch in range(epochs):
trainLoss = train_epoch(trainLoader, model, loss_fn, optimizer)
testLoss = test_epoch(testLoader, model, loss_fn)
trainLossList.append(trainLoss)
testLossList.append(testLoss)
print(epoch, trainLoss, testLoss)
return trainLossList, testLossList if __name__ == "__main__":
trainData = GeneDataset([-1, 1], [-1, 1], [-1, 1], num=1000, \
transform=torch.tensor, target_transform=torch.tensor)
testData = GeneDataset([-1, 1], [-1, 1], [-1, 1], num=300, \
transform=torch.tensor, target_transform=torch.tensor)
trainLoader = data.DataLoader(trainData, batch_size=len(trainData), shuffle=False)
testLoader = data.DataLoader(testData, batch_size=len(testData), shuffle=False)
bnsObj = BatchNormShow(trainLoader, testLoader)
epochs = 10000
bnsObj.train(epochs)
结果展示

可以看到, Batch Normalization使得模型具备更快的收敛速度, 不过对最终收敛值影响不大, 即在上述重整手段下模型复杂度变化不大.
使用建议
①. Batch Normalization改变了特征分布, 具备调整模型复杂度的能力;
②. Batch Normalization使特征分布在原点附近, 不容易出现梯度消失或梯度爆炸;
③. Batch Normalization适用于神经网络全连接层与卷积层.参考文档
①. 动手学深度学习 - 李牧
Neural Network模型复杂度之Batch Normalization - Python实现的更多相关文章
- 吴恩达深度学习笔记(十二)—— Batch Normalization
主要内容: 一.Normalizing activations in a network 二.Fitting Batch Norm in a neural network 三.Why does ...
- Batch Normalization详解
目录 动机 单层视角 多层视角 什么是Batch Normalization Batch Normalization的反向传播 Batch Normalization的预测阶段 Batch Norma ...
- [CS231n-CNN] Training Neural Networks Part 1 : activation functions, weight initialization, gradient flow, batch normalization | babysitting the learning process, hyperparameter optimization
课程主页:http://cs231n.stanford.edu/ Introduction to neural networks -Training Neural Network ________ ...
- [C2W3] Improving Deep Neural Networks : Hyperparameter tuning, Batch Normalization and Programming Frameworks
第三周:Hyperparameter tuning, Batch Normalization and Programming Frameworks 调试处理(Tuning process) 目前为止, ...
- 图像分类(二)GoogLenet Inception_v2:Batch Normalization: Accelerating Deep Network Training by Reducing Internal Covariate Shift
Inception V2网络中的代表是加入了BN(Batch Normalization)层,并且使用 2个 3*3卷积替代 1个5*5卷积的改进版,如下图所示: 其特点如下: 学习VGG用2个 3* ...
- 课程二(Improving Deep Neural Networks: Hyperparameter tuning, Regularization and Optimization),第三周(Hyperparameter tuning, Batch Normalization and Programming Frameworks) —— 2.Programming assignments
Tensorflow Welcome to the Tensorflow Tutorial! In this notebook you will learn all the basics of Ten ...
- Batch normalization:accelerating deep network training by reducing internal covariate shift的笔记
说实话,这篇paper看了很久,,到现在对里面的一些东西还不是很好的理解. 下面是我的理解,当同行看到的话,留言交流交流啊!!!!! 这篇文章的中心点:围绕着如何降低 internal covari ...
- Deep Learning 27:Batch normalization理解——读论文“Batch normalization: Accelerating deep network training by reducing internal covariate shift ”——ICML 2015
这篇经典论文,甚至可以说是2015年最牛的一篇论文,早就有很多人解读,不需要自己着摸,但是看了论文原文Batch normalization: Accelerating deep network tr ...
- 论文笔记:Person Re-identification with Deep Similarity-Guided Graph Neural Network
Person Re-identification with Deep Similarity-Guided Graph Neural Network 2018-07-27 17:41:45 Paper: ...
- 论文翻译:2020_WaveCRN: An efficient convolutional recurrent neural network for end-to-end speech enhancement
论文地址:用于端到端语音增强的卷积递归神经网络 论文代码:https://github.com/aleXiehta/WaveCRN 引用格式:Hsieh T A, Wang H M, Lu X, et ...
随机推荐
- 学习Java Day4
今天重点学习了读取输入,然后在eclipse上试了很多次,存在一些还没能解决的问题,发现eclipse的使用十分不熟练, 明天重点学习一下如何使用eclipse.
- 如何使用 ArrayPool
如果不停的 new 数组,可能会造成 GC 的压力,因此在 aspnetcore 中推荐使用 ArrayPool 来重用数组,本文将介绍如何使用 ArrayPool. 使用 ArrayPool Arr ...
- 利用Git+GitHub进行团队协作开发
自己之前写过两篇关于Git和GItHub使用的文章,分别是 浅谈使用git 进行版本控制博客链接:https://www.cnblogs.com/wj-1314/p/7992543.html 使用Gi ...
- Zstack救急实战记录
起了这么个标题很容易引起歧义,先说明:是Zstack云架构帮我救急,而不是Zstack系统出了问题被救.具体容我慢慢道来: 使用Docker搭建EPICS的IOC记录 去年暑假时在一台工控机上裸装ce ...
- 交叉熵损失CrossEntropyLoss
在各种深度学习框架中,我们最常用的损失函数就是交叉熵,熵是用来描述一个系统的混乱程度,通过交叉熵我们就能够确定预测数据与真实数据的相近程度.交叉熵越小,表示数据越接近真实样本. 1 分类任务的损失计算 ...
- 安卓逆向 IDA 动态调试 案例1
adb forward tcp:23946 tcp:23946 adb devices adb shell su cd /data/local/tmp ./android_server adb she ...
- 一步步入门Jenkins+Net Core3.1+Gitlab,实现 CICD
架构说明: 由浅入深,我们暂时不考虑分布式,安装Jenkins到用户服务器进行CICD 需要两台服务器 Gitlab:192.168.232.128:12080 源代码仓库,可以参考<安装git ...
- Kotlin学习-类(嵌套类,内部类,数据类,静态类)及类扩展
一般类形式: class Person(var name: String){//构造函数放在类头部 var age = 1 var fulName: String var address = &quo ...
- 学习操作系统P3 多处理器编程:从入门到放弃 (线程库;现代处理器和宽松内存模型)
啊 啊 啊 啊 操作系统会自动把线程放置在不同的处理器上 可以用top观察CPU使用率 啊 啊 啊 啊 a 甚至连一个简单的求和程序都做不对 a 汇编语言中的 lock: CPU的特性,通过总线加锁, ...
- CF1383E 题解
题意 传送门 给定一个长度为 \(n\) 的 01 串 \(a\).在一次操作中,你可以选择任意一个 \(i\in[1,|a|)\),令 \(a_i=\max(a_i,a_{i+1})\),然后将 \ ...