tensorflow SavedModelBuilder用法
训练代码:
# coding: utf-8
from __future__ import print_function
from __future__ import division
import tensorflow as tf
import numpy as np
import argparse
def dense_to_one_hot(input_data, class_num):
data_num = input_data.shape[0]
index_offset = np.arange(data_num) * class_num
labels_one_hot = np.zeros((data_num, class_num))
labels_one_hot.flat[index_offset + input_data.ravel()] = 1
return labels_one_hot
def build_parser():
parser = argparse.ArgumentParser()
parser.add_argument('--data_path', type=str, required=True)
parser.add_argument('--model_dir', type=str, required=True)
args = parser.parse_args()
return args
p = build_parser()
origin = np.genfromtxt(p.data_path, delimiter=',')
data = origin[:, 0:2]
labels = origin[:, 2]
learning_rate = 0.001
training_epochs = 5000
display_step = 1
n_features = 2
n_class = 2
x = tf.placeholder(tf.float32, [None, n_features], "input")
y = tf.placeholder(tf.float32, [None, n_class])
W = tf.Variable(tf.zeros([n_features, n_class]), name="w")
b = tf.Variable(tf.zeros([n_class]), name="b")
scores = tf.nn.xw_plus_b(x, W, b, name='scores')
pred_proba = tf.nn.softmax(scores, name="pred_proba")
cost = tf.reduce_mean(tf.nn.softmax_cross_entropy_with_logits(logits=scores, labels=y))
optimizer = tf.train.GradientDescentOptimizer(learning_rate).minimize(cost)
saver = tf.train.Saver()
tf.add_to_collection('pred_proba', pred_proba)
init = tf.global_variables_initializer()
with tf.Session() as sess:
sess.run(init)
for epoch in range(training_epochs):
result_pred_proba, _, c = sess.run([pred_proba, optimizer, cost],
feed_dict={x: data, y: dense_to_one_hot(labels.astype(int), 2)})
if epoch % 100 == 0:
print(c)
builder = tf.saved_model.builder.SavedModelBuilder(p.model_dir)
inputs = {'input': tf.saved_model.utils.build_tensor_info(x)}
outputs = {'pred_proba': tf.saved_model.utils.build_tensor_info(pred_proba)}
signature = tf.saved_model.signature_def_utils.build_signature_def(inputs, outputs, 'test_sig_name')
builder.add_meta_graph_and_variables(sess, ['test_saved_model'], {'test_signature': signature})
builder.save()
推理代码:
# coding: utf-8
from __future__ import print_function
from __future__ import division
import tensorflow as tf
import numpy as np
import argparse
def build_parser():
parser = argparse.ArgumentParser()
parser.add_argument('--model_dir', type=str, required=True)
args = parser.parse_args()
return args
p = build_parser()
with tf.Session() as sess:
signature_key = 'test_signature'
input_key = 'input'
output_key = 'pred_proba'
meta_graph_def = tf.saved_model.loader.load(sess, ['test_saved_model'], p.model_dir)
signature = meta_graph_def.signature_def
x_tensor_name = signature[signature_key].inputs[input_key].name
y_tensor_name = signature[signature_key].outputs[output_key].name
x = sess.graph.get_tensor_by_name(x_tensor_name)
y = sess.graph.get_tensor_by_name(y_tensor_name)
r = sess.run(y, feed_dict={x: np.array([[0.6211, 5]])})
print(r)
print(0 if r[0][0] > r[0][1] else 1)
参考资料
tensorflow SavedModelBuilder用法的更多相关文章
- Tensorflow Summary用法
本文转载自:https://www.cnblogs.com/lyc-seu/p/8647792.html Tensorflow Summary用法 tensorboard 作为一款可视化神器,是学习t ...
- 第一节,TensorFlow基本用法
一 TensorFlow安装 TensorFlow是谷歌基于DistBelief进行研发的第二代人工智能学习系统,其命名来源于本身的运行原理.Tsnsor(张量)意味着N维数组,Flow(流)意味着基 ...
- tensorflow add_to_collection用法
训练代码: # coding: utf-8 from __future__ import print_function from __future__ import division import t ...
- tensorflow基本用法个人笔记
综述 TensorFlow程序分为构建阶段和执行阶段.通过构建一个图.执行这个图来得到结果. 构建图 创建源op,源op不需要任何输入,例如常量constant,源op的输出被传递给其他op做 ...
- Tensorflow学习笔记——Summary用法
tensorboard 作为一款可视化神器,可以说是学习tensorflow时模型训练以及参数可视化的法宝. 而在训练过程中,主要用到了tf.summary()的各类方法,能够保存训练过程以及参数分布 ...
- (转)TensorFlow 入门
TensorFlow 入门 本文转自:http://www.jianshu.com/p/6766fbcd43b9 字数3303 阅读904 评论3 喜欢5 CS224d-Day 2: 在 Da ...
- 统计学习方法:罗杰斯特回归及Tensorflow入门
作者:桂. 时间:2017-04-21 21:11:23 链接:http://www.cnblogs.com/xingshansi/p/6743780.html 前言 看到最近大家都在用Tensor ...
- 芝麻HTTP:TensorFlow基础入门
本篇内容基于 Python3 TensorFlow 1.4 版本. 本节内容 本节通过最简单的示例 -- 平面拟合来说明 TensorFlow 的基本用法. 构造数据 TensorFlow 的引入方式 ...
- tensorflow 学习日志
Windows安装anaconda 和 TensorFlow anaconda : https://zhuanlan.zhihu.com/p/25198543 anaconda 使用与说 ...
随机推荐
- PHP laravel+thrift+swoole打造微服务框架
Laravel作为最受欢迎的php web框架一直广受广大互联网公司的喜爱. 笔者也参与过一些由laravel开发的项目.虽然laravel的性能广受诟病但是业界也有一些比较好的解决方案,比如堆机器, ...
- VMware安装Ubuntu 16.04.4 LTS
1.下载Ubuntu镜像 https://www.ubuntu.com/download/desktop 2.创建新的虚拟机 3. 4.这里默认即可,可以不选 5. 6. 7.这里位置可以随时改 8. ...
- SpringBoot 源码解析 (六)----- Spring Boot的核心能力 - 内置Servlet容器源码分析(Tomcat)
Spring Boot默认使用Tomcat作为嵌入式的Servlet容器,只要引入了spring-boot-start-web依赖,则默认是用Tomcat作为Servlet容器: <depend ...
- spark thriftserver
spark可以作为一个分布式的查询引擎,用户通过JDBC的形式无需写任何代码,写写sql就可以实现查询啦,spark thriftserver的实现也是相当于hiveserver2的方式,并且在测试时 ...
- shell脚本1——变量 $、read、``
与Shell变量相关的几个命令: 变量只在当前Shell中生效. source 这个命令让脚本影响他们父Shell的环境(. 可以代替source命令) export 这个命令可以让脚本影响其子She ...
- 剑指Offer-20.包含min函数的栈(C++/Java)
题目: 定义栈的数据结构,请在该类型中实现一个能够得到栈中所含最小元素的min函数(时间复杂度应为O(1)). 分析: 因为题目要求得到栈中最小元素的min函数时间复杂度为O(1),这里便不选择遍历栈 ...
- 防火墙和SELinux复习02
1.防火墙 防火墙主要起隔离作用,严格的过滤入站,允许出站.又分为硬件防火墙和软件防火墙,硬件防火墙主要保护一群机器,而软件防火墙主要保护本机. 防火墙相关命令:systemctl status fi ...
- ArcGIS 发布Feature服务
运行环境: Win10 ArcGIS10.4 具体操作: 1.打开ArcMap,加载sde中导入的文件,也可以加载shp数据源指向sde中文件 2.保存成mxd,然后点share as-Service ...
- Spring Boot (一) 校验表单重复提交
一.前言 在某些情况下,由于网速慢,用户操作有误(连续点击两下提交按钮),页面卡顿等原因,可能会出现表单数据重复提交造成数据库保存多条重复数据. 存在如上问题可以交给前端解决,判断多长时间内不能再次点 ...
- c# 基于DataTable的Compute方法的扩展
DataTable.Compute(String, String) 方法 定义 命名空间:System.Data 程序集:System.Data.dll, netstandard.dll, Syste ...