scrapy抓取豆瓣电影相关数据
1. 任务分析及说明
目标网站:https://movie.douban.com/tag/#/
抓取豆瓣电影上,中国大陆地区,相关电影数据约1000条;数据包括:电影名称、导演、主演、评分、电影类型、语言、上映时间、短评top20等数据;
1.1 Fiddler抓包要点分析:
请求均为GET请求;拼接后的URL为是https://movie.douban.com/j/new_search_subjects?sort=U&range=0,10&tags=电影&start=0
其中,range表示评分区间(0,10表示筛选评分在0-10之间的电影);
tags表示分类类别(电影?剧集?);
第一次请求默认返回20部电影相关信息,start=0;点击加载更多start=20,即每次点击一次加载更多,start增加20;
返回数据为json格式,数据包括电影名称、导演、电影详情的URL等信息;
从json数据中提取电影详情页的URL,访问并抓取详情信息;
抓取电影短评时,只抓取了最前面的20条,并利用//拼接成一个字符串,数据保存为excel形式。
2. 代码逻辑
2.1 项目创建
利用scrapy的基本命令创建项目、爬虫等,在此不细说,直接上命令。
scrapy startproject DoubanMovie # 创建项目 cd DoubanMovie # 进入项目目录 scrapy genspider douban douban.movie.com # 创建爬虫
2.2 明确抓取字段
scrapy爬虫的套路都相似,创建项目后首先明确爬取字段;其次,编写爬虫逻辑;然后,编写数据保存逻辑;最后,做一些修修补补的工作,例如添加请求头啊,注册通道呀等等。
来到items.py文件中,明确要抓取的字段。
# -*- coding: utf-8 -*-
import scrapy class DoubanmoviesItem(scrapy.Item): # 电影名称
filmtitle = scrapy.Field()
# 电影评分
moviemark = scrapy.Field()
# 导演名称
moviedirt = scrapy.Field()
# 电影主演
movierole = scrapy.Field()
# 电影类型
movietype = scrapy.Field()
# 制片地区
moviearea = scrapy.Field()
# 语言类型
movielang = scrapy.Field()
# 上映时间
moviedate = scrapy.Field()
# 剧情简介
moviesyno = scrapy.Field()
# 电影短评
moviecoms = scrapy.Field()
# # 电影影评
# movierews = scrapy.Field()
2.3 爬虫逻辑
明确抓取字段后,开始到spiders文件夹下的douban.py中编写爬虫逻辑。豆瓣电影返回的数据为json格式,对json格式的数据进行解析,从中提取到电影详情页的url,访问并从中提取详细信息。
# -*- coding: utf-8 -*-
import re
import json
import scrapy from DoubanMovies.items import DoubanmoviesItem class DoubanSpider(scrapy.Spider):
name = 'douban'
allowed_domains = ['movie.douban.com']
# start_urls = ['http://movie.douban.com/'] start = 0 # 指定参数
formdata = {
'sort': 'U',
'range': '0, 10',
'tags': '电影',
'start': '',
'countries': '中国大陆' # 这里只抓取中国大陆地区,其他地区可做相应修改
} base_url = 'https://movie.douban.com/j/new_search_subjects' def start_requests(self): # 构造初始请求url
url = self.base_url + '?' + 'sort={}&range={}&tags={}&start={}&countries={}'.format(
self.formdata['sort'], self.formdata['range'], self.formdata['tags'],
self.formdata['start'], self.formdata['countries']
) # 发起请求
yield scrapy.Request(
url=url,
callback=self.parse,
meta={'formdata': self.formdata}
) def parse(self, response):
"""
豆瓣默认返回json格式的数据
:param response:
:return:
"""
formdata = response.meta['formdata'] # 将json格式的数据转化为字典
data_list = json.loads(response.body.decode())['data'] # 数据解析
for data in data_list: # 从json数据中解析基本信息
item = DoubanmoviesItem()
item['filmtitle'] = data['title']
item['moviemark'] = data['rate']
item['moviedirt'] = ' '.join(data['directors'])
item['movierole'] = ' '.join(data['casts']) # 拿到详情页链接,获取影评等信息
detail_url = data['url']
yield scrapy.Request(
url=detail_url,
callback=self.parse_detail,
meta={'item': item, 'formdata': formdata} # 传入item到parse_detail,继续解析数据
) if not self.start == 1000: # 抓取1020条数据
self.start += 20
formdata = self.formdata
formdata['start'] = str(self.start) url = self.base_url + '?' + 'sort={}&range={}&tags={}&start={}&countries={}'.format(
formdata['sort'], formdata['range'], formdata['tags'],
formdata['start'], formdata['countries']) yield scrapy.Request(
url=url,
callback=self.parse,
meta={'formdata': formdata}
) def parse_detail(self, response):
"""
从详情页解析其他信息
:param response:
:return:
"""
formdata = response.meta['formdata']
item = response.meta['item'] item['movietype'] = '/'.join(response.xpath("//div[@id='info']/span[@property='v:genre']/text()").extract())
item['moviearea'] = formdata['countries']
item['movielang'] = ''.join(re.findall('<span class="pl">语言:</span>(.*?)<br/>', response.body.decode()))
item['moviedate'] = '/'.join(response.xpath("//div[@id='info']/span[@property='v:initialReleaseDate']/text()").extract())
item['moviesyno'] = response.xpath("//div[@id='link-report']/span[1]/text()").extract_first().strip() # 新页面解析电影短评
coms_url = response.xpath("//div[@id='comments-section']/div[1]/h2/span/a/@href").extract_first()
yield scrapy.Request(
url=coms_url,
callback=self.parse_coms, # 在parse_coms中提取电影短评,这里只提取前20
meta={'item': item}
) def parse_coms(self, response):
"""
解析电影短评top20,将20条短评以//拼接成一个字符串
:param response:
:return:
"""
item = response.meta['item'] # 提取短评top20
coms_list = response.xpath("//div[@id='comments']/div[@class='comment-item']/div[@class='comment']/p/span/text()").extract()
item['moviecoms'] = '//'.join(coms_list) yield item
2.4 数据保存
编写完爬虫逻辑后,来到pipelines.py文件中编写保存数据逻辑。这里将数据保存为excel格式。
# -*- coding: utf-8 -*-
from openpyxl import Workbook class DoubanmoviesPipeline(object): def __init__(self): # 创建excel表格保存数据
self.workbook = Workbook()
self.booksheet = self.workbook.active
self.booksheet.append(['电影名称', '评分', '导演',
'主演', '电影类型', '制片地区',
'语言类型', '上映时间', '剧情简介',
'短评(top20)']) def process_item(self, item, spider): DATA = [
item['filmtitle'], item['moviemark'], item['moviedirt'],
item['movierole'], item['movietype'], item['moviearea'],
item['movielang'], item['moviedate'], item['moviesyno'],
item['moviecoms']]
self.booksheet.append(DATA)
self.workbook.save('./results.xls') return item
2.5 其他
1. 通道注册,包括下载中间件,pipelines等的注册,还有不遵循爬虫协议
2. 延时处理,在settings.py文件中添加
DOWNLOAD_DELAY = 5 # 每个请求延迟5秒
3. 添加请求头
在下载中间件(middlewares.py)中给每个请求添加请求头
# -*- coding: utf-8 -*-
from DoubanMovies.settings import USER_AGENTS as ua
import random class DoubanmoviesDownloaderMiddleware(object): def process_request(self, request, spider):
"""
给每一个请求随机分配一个代理
:param request:
:param spider:
:return:
"""
user_agent = random.choice(ua)
request.headers['User-Agent'] = user_agent
4. 将运行命令写在main.py文件中
from scrapy import cmdline
cmdline.execute('scrapy crawl douban'.split())
3. 完整代码
参见:https://github.com/zInPython/DoubanMovie
scrapy抓取豆瓣电影相关数据的更多相关文章
- Python小爬虫——抓取豆瓣电影Top250数据
python抓取豆瓣电影Top250数据 1.豆瓣地址:https://movie.douban.com/top250?start=25&filter= 2.主要流程是抓取该网址下的Top25 ...
- python2.7抓取豆瓣电影top250
利用python2.7抓取豆瓣电影top250 1.任务说明 抓取top100电影名称 依次打印输出 2.网页解析 要进行网络爬虫,利用工具(如浏览器)查看网页HTML文件的相关内容是很有必要,我使用 ...
- Python爬虫----抓取豆瓣电影Top250
有了上次利用python爬虫抓取糗事百科的经验,这次自己动手写了个爬虫抓取豆瓣电影Top250的简要信息. 1.观察url 首先观察一下网址的结构 http://movie.douban.com/to ...
- 用python+selenium抓取豆瓣电影中的正在热映前12部电影并按评分排序
抓取豆瓣电影(http://movie.douban.com/nowplaying/chengdu/)中的正在热映前12部电影,并按照评分排序,保存至txt文件 #coding=utf-8 from ...
- scrapy爬取豆瓣电影top250
# -*- coding: utf-8 -*- # scrapy爬取豆瓣电影top250 import scrapy from douban.items import DoubanItem class ...
- Python:python抓取豆瓣电影top250
一直对爬虫感兴趣,学了python后正好看到某篇关于爬取的文章,就心血来潮实战一把吧. 实现目标:抓取豆瓣电影top250,并输出到文件中 1.找到对应的url:https://movie.douba ...
- Python3 抓取豆瓣电影Top250
利用 requests 抓取豆瓣电影 Top 250: import re import requests def main(url): global num headers = {"Use ...
- Python抓取豆瓣电影top250!
前言 本文的文字及图片来源于网络,仅供学习.交流使用,不具有任何商业用途,版权归原作者所有,如有问题请及时联系我们以作处理.作者:404notfound 一直对爬虫感兴趣,学了python后正好看到 ...
- python爬取豆瓣电影信息数据
题外话+ 大家好啊,最近自己在做一个属于自己的博客网站(准备辞职回家养老了,明年再战)在家里 琐事也很多, 加上自己 一回到家就懒了(主要是家里冷啊! 广东十几度,老家几度,躲在被窝瑟瑟发抖,) 由于 ...
随机推荐
- python wraps的作用
1.__name__用来显示函数的名称,__doc__用来显示文档字符串也就是("""文档字符串""")这里面的内容 2.首先我们来看不加@ ...
- 设置和获取html里面的内容.html
<!DOCTYPE html> <html> <head> <meta charset="UTF-8"> <title> ...
- @ConditionalOnProperty注解
一 源码解析 查看ConditionalOnProperty的源码 package org.springframework.boot.autoconfigure.condition; import j ...
- 重邮二进制群-pwn1
给学弟们练手的题目,做的过程中接触一些基本概念 #include <stdio.h> #include <unistd.h> int main() { ]; welcome() ...
- NOIP模拟 29
T1第一眼觉得是网络流 看见4e6条边200次增广我犹豫了 O(n)都过不去的赶脚.. 可是除了网络流板子我还会什么呢 于是交了个智障的EK 还是用dijkstra跑的 居然有50分!$(RP--)$ ...
- NOIP原题 斗地主(20190804)
题目描述 牛牛最近迷上了一种叫斗地主的扑克游戏.斗地主是一种使用黑桃.红心.梅花.方片的A到K加上大小王的共54张牌来进行的扑克牌游戏.在斗地主中,牌的大小关 系根据牌的数码表示如下:3<4&l ...
- 曹工杂谈:为什么很少需要改Spring源码,因为扩展点太多了,说说Spring的后置处理器
前言 最近发了好几篇,都是覆盖框架源码,但是spring的代码,我是从没覆盖过,毕竟,如果方便扩展,没谁想去改源码,而spring就是不需要改源码的那个,真的是"对扩展开放,对修改关闭&qu ...
- m101 真*sb($\huge 全场最瞎$)
不想说这场考试,T1全场切,但是我: T3全场30,但是: 鬼知道我为什么敲的是p*p啊(而且还炸精了!) kuku----! $\huge 全场最瞎$
- 『题解』洛谷P3384 【模板】树链剖分
Problem Portal Portal1: Luogu Description 如题,已知一棵包含\(N\)个结点的树(连通且无环),每个节点上包含一个数值,需要支持以下操作: 操作\(1\): ...
- .NET Core 对龙芯的支持情况和对 .NET Core 开发嵌入式的思考
目录 .NET Core 对龙芯的支持情况和对 .NET Core 开发嵌入式的思考 一,遗憾的尝试 二,.NET Core在嵌入式下的几点不足 三,.NET Core 龙芯移植的进展和资料 .NET ...