插值多项式的牛顿法

1.为何需要牛顿法?

​ 使用Lagrange插值法不具备继承性。当求好经过\(({x_0},{y_0})-({x_n},{y_n})\)共n+1个点的插值曲线时候,如果再增加一个点,由Lagrange插值法通式\[\sum_{k=0}^{n}\frac{\prod_{i=0,i\ne k}^{n}(x-x_i)}{\prod_{i=0,i\ne k}^{n}(x_k-x_i)}y_k\]可以知道,当再增加一个点时候,Lagrange 多项式还要重新计算以确定系数。

2.牛顿插值多项式

由线性代数的知识可以知道,任何n次多项式都可以表示成1,\((x-x_0)\),\((x-x_0)(x-x_1)\),\({\ldots}\),\((x-x_0)(x-x_1){\ldots}(x-x_{n-2})(x-x_{n-1})\) 的线性组合形式,牛顿插值多项式正是基于这一点。\(N_n\)(x)=\(a_0\)+\(a_1\)(\(x-x_0\))+\(a_2\)(\(x-x_0\))(\(x-x_1\))+\({\ldots}\)+\(a_n(x-x_0)(x-x_1)(x-x_2){\ldots}(x-x_{n-1})\),其中\(a_k\)为插值多项式的待定系数。(一下关于牛顿插值多项式系数计算是基于各x结点的等距条件)

3.牛顿向前差分公式

假设\(x=x_k,\)则此时\(y=y_k\),这样,若\(a_0,a_1,a_2\dots\)则可以求出\(a_k\)。因为\(N(x_k)=y_k\),而对于含有\(a_{k+1},a_{k+2}\dots a_{n}\)项代入\(x_k\)后值为0。那么所求\(a_k\)=\[\frac{y_k-()}{\prod_{i=0}^{k-1}x_k-x_i}\],在假设\(x_k\)为等距结点的时候,\(x_k\)可以表示为\(x_k=x_0+kh\),其中h为步长。那么所求\(a_k\)近似可表示为\(a_k=\frac{y_k-()}{k!h^k}\)。

定义 f(x)在\(x_k\)处的向前差分为\(\Delta y=y_{k+1}-y_k\),相应的我们可以定义\(\Delta y\)的差分,也就是y的二阶向前差分\(\Delta^{2} y_k=\Delta y_{k+1}-\Delta y_k\); 这样,类似我们可以定义y的m阶向前差分\(\Delta ^{m} y_k = \Delta ^{m-1} y_{k+1} -\Delta ^{m-1} y_k\)。在等距结点\(x=x_0+kh\) 的条件下我们可以利用向前差分来导出系数的计算。

4.牛顿向前差分公式系数计算

由\(N_n(x_0)=y_0\)可以得到\(a_0\)的表达式为\(a_0=y_0\),这样我们可以定义y的零阶向前差分\(\Delta ^0 y=y0\),这样利用3中推出的\(a_k\)表达式可以将这个结果化为这样的形式\(a_0=\frac{\Delta^0 y_0}{0!h^0}\)。我们再来看\(a_1\)的表达式。因为\(N_n(x_1)=y_1=a_0+a_1(x_1-x_0)\),而\(a_0\)为\(y_0\),则\(a_1=\frac{y_1-y_0}{x_1-x_0}=\frac{\Delta^1 y_0}{1!h^1}\)。同样的,我们来计算\(a_2\)的表达式。\(N_n(x_2)=a_0+a_1(x_2-x_0)+a_2(x2-x_0)(x_2-x_1)=y_2\),而又因为\(x_2-x_0=2h,a1\)可以表示成\(\frac{\Delta y_0}{h}\),因而可以将\(a_2\)表示为\(a_2=\frac{y2-y0-\frac{\Delta y_0}{h}2h}{(x_2-x_0)(x_2-x_1)}=\frac{y_2-y_0-2(y_1-y_0)}{2!h^2}=\frac{(y_2-y_1)-(y_1-y_0)}{2!h^2}=\frac{\Delta^2 y_0}{2!h^2}\),这样规律就很明显了。事实上,通过计算我们可以得到\(a_k\)的表达式为\(a_k=\frac{\Delta ^k y_0}{k!h^k}(k=0,1,\cdots {n-1},{n})\),于是我们可以将牛顿多项式完整的表达出来了---\(N_n(x)=\frac{\Delta ^0 y_0}{0!h^0}+\frac{\Delta ^1 y_0}{1!h^1}(x-x_0)+\frac{\Delta ^2 y_0}{2!h^2}(x-x_0)(x-x_1)+\cdots+\frac{\Delta ^k y_0}{k!h^k}(x-x_0)(x-x1)\cdots(x-x_{k-1})+\)\(\cdots+\frac{\Delta ^n y_0}{n!h^n}(x-x_0)(x-x_1)\cdots(x-x_{n-1})\)。这样我们就得到了牛顿插值公式的完整表达,通过计算\(y_0\)的n阶向前差分就可以得到结果了。

5.如何再化简?

​ 我们再x等距取样条件下得到了牛顿插值多项式的表达式,同样的,可以充分利用这个条件。也就是设x=\(x_0+th\),其中h为步长。这样\[\sum_{i=0}^{k-1}(x-x_i)=th*(t-1)h*\cdots*(t-k+1)h=A_t^kh^k\],而系数\(a_k=\frac{\Delta ^k y_0}{k!h^k}\),所要整合式子可以得到\(N_n(x_0+th)=y_0+t\Delta y_0+\frac{t(t-1)\Delta ^2 y_0}{2!}+\cdots+\frac{t(t-1)\cdots(t-n+1\Delta ^ny_0)}{n!}\)=\(\sum_{k=0}^{n}\frac{A_t^k \Delta ^k y_0}{k!}\)

最后说明

这里只是利用了等距取点条件计算的牛顿插值公式表达式,实际情况下取的点不一定等距,因此,在不等距的条件下相应还要计算方法(后面我会逐渐整理的)。除此之外,还可以用向后差分,中心差分法,限于时间,往后再整理了。

等距结点下的Newton插值多项式系数计算(向前差分)的更多相关文章

  1. 数值分析案例:Newton插值预测2019城市(Asian)温度、Crout求解城市等温性的因素系数

    数值分析案例:Newton插值预测2019城市(Asian)温度.Crout求解城市等温性的因素系数 文章目录 数值分析案例:Newton插值预测2019城市(Asian)温度.Crout求解城市等温 ...

  2. Newton插值的C++实现

    Newton(牛顿)插值法具有递推性,这决定其性能要好于Lagrange(拉格朗日)插值法.其重点在于差商(Divided Difference)表的求解. 步骤1. 求解差商表,这里采用非递归法(看 ...

  3. jquery清除某一结点下的子节点

    jquery清除某一结点下的子节点:这个情况多用于数据的加载中,如果当执行某一操作之后,想重新加载页面,但是又不想整个页面都重新加载,这个时候就可以使用该方法, case:   $("#ta ...

  4. 实现Linux下dc的功能,计算后缀表达式的值

    提交测试截图和码云练习项目链接,实现Linux下dc的功能,计算后缀表达式的值 -将运算符写在两个操作数之后的表达式称为"后缀表达式",如上面的中缀表达式可转换为后缀表达式1 2 ...

  5. Fluent批处理之--windows下多个任务的计算 【转载】

    转载自http://jingcao830828.blog.163.com/blog/static/10320833620103633624506/ 1.同维多任务的连续计算 对于工程应用来说,计算精度 ...

  6. [math][mathematica] archlinux 下 mathematica 的安装 (科学计算软件 mathematica/matlab/sagemath)

    ONLINE: http://www.wolframalpha.com/ GPL: segamath: http://www.sagemath.org/ famous and not free: ma ...

  7. c语言下的变量类型及计算

    源码 补码 反码 机器数:一个数在计算机中的二进制表示形式,  叫做这个数的机器数.机器数是带符号的,在计算机用一个数的最高位存放符号, 正数为0, 负数为1.   真值:第一位是符号位,将带符号位的 ...

  8. 多项式函数插值:全域多项式插值(一)单项式基插值、拉格朗日插值、牛顿插值 [MATLAB]

    全域多项式插值指的是在整个插值区域内形成一个多项式函数作为插值函数.关于多项式插值的基本知识,见“计算基本理论”. 在单项式基插值和牛顿插值形成的表达式中,求该表达式在某一点处的值使用的Horner嵌 ...

  9. 插值方法 - Newton向前向后等距插值

    通常我们在求插值节点的开头部分插值点附近函数值时,使用Newton前插公式:求插值节点的末尾部分插值点附近函数值时,使用Newton后插公式. 代码: 1 # -*- coding: utf-8 -* ...

随机推荐

  1. 你应该知道的简单易用的CSS技巧

    作为前端,在工作中难免会遇到关于排版的问题,以下是我整理的一些关于CSS的技巧,希望对你能有帮助. 1.每个单词的首字母大写 一般我们会用JS实现,其实CSS就可以实现. JS代码: var str ...

  2. FFmpeg(一)

    1. FFmpeg分为3个版本:Static.  Shared. Dev 前两个版本可以直接在命令行中使用.包含了三个exe:ffmpeg.exe,ffplay.exe,ffprobe.exe Sta ...

  3. [docker swarm] 从单容器走向负载均衡部署

    背景 之前写过<<docker-compose真香>> 和<docker-compose.docker stack前世今生>两篇博客, 回顾一下思路: ① dock ...

  4. 响应系统设置的事件(Configuration类)

    1.Configuration给我们提供的方法列表 densityDpi:屏幕密度 fontScale:当前用户设置的字体的缩放因子 hardKeyboardHidden:判断硬键盘是否可见,有两个可 ...

  5. windows服务器多端口Redis安装步骤

    1.从官网获取最新稳定版redis文件.按端口号复制多个文件,比如6379和6380端口的文件包, 修改各自Conf文件的port号,分别为6379和6380.然后重命名为redis6379.conf ...

  6. Python中的可变对象与不可变对象、浅拷贝与深拷贝

    Python中的对象分为可变与不可变,有必要了解一下,这会影响到python对象的赋值与拷贝.而拷贝也有深浅之别. 不可变对象 简单说就是某个对象存放在内存中,这块内存中的值是不能改变的,变量指向这块 ...

  7. CS231n:Python Numpy教程

    Python 基本数据类型 容器 列表 字典 集合 元组 函数 类 Numpy 数组 访问数组 数据类型 数组计算 广播 SciPy 图像操作 MATLAB文件 点之间的距离 Matplotlib 绘 ...

  8. postman环境变量设置

    1.点击小齿轮进入到环境变量添加页面,点击add添加环境变量 2.输入变量名称和变量值 3.添加成功 4.接口中设置变量

  9. Vue学习笔记和代码记录

    ## 安装 * 直接引入链接:建议初学者使用:* 通过node.js的NPM安装Vue:* 通过node.js的NPM安装Vue-cli脚手架(推荐安装方式): ## 基础 ### 数据类型 * 字符 ...

  10. luoguP2144 [FJOI2007]轮状病毒

    题目描述 求 nnn 个点的生成树个数. Solution 2144\text{Solution 2144}Solution 2144 打表得 1=125=5×1216=4245=5×32121=11 ...