等距结点下的Newton插值多项式系数计算(向前差分)
插值多项式的牛顿法
1.为何需要牛顿法?
使用Lagrange插值法不具备继承性。当求好经过\(({x_0},{y_0})-({x_n},{y_n})\)共n+1个点的插值曲线时候,如果再增加一个点,由Lagrange插值法通式\[\sum_{k=0}^{n}\frac{\prod_{i=0,i\ne k}^{n}(x-x_i)}{\prod_{i=0,i\ne k}^{n}(x_k-x_i)}y_k\]可以知道,当再增加一个点时候,Lagrange 多项式还要重新计算以确定系数。
2.牛顿插值多项式
由线性代数的知识可以知道,任何n次多项式都可以表示成1,\((x-x_0)\),\((x-x_0)(x-x_1)\),\({\ldots}\),\((x-x_0)(x-x_1){\ldots}(x-x_{n-2})(x-x_{n-1})\) 的线性组合形式,牛顿插值多项式正是基于这一点。\(N_n\)(x)=\(a_0\)+\(a_1\)(\(x-x_0\))+\(a_2\)(\(x-x_0\))(\(x-x_1\))+\({\ldots}\)+\(a_n(x-x_0)(x-x_1)(x-x_2){\ldots}(x-x_{n-1})\),其中\(a_k\)为插值多项式的待定系数。(一下关于牛顿插值多项式系数计算是基于各x结点的等距条件)
3.牛顿向前差分公式
假设\(x=x_k,\)则此时\(y=y_k\),这样,若\(a_0,a_1,a_2\dots\)则可以求出\(a_k\)。因为\(N(x_k)=y_k\),而对于含有\(a_{k+1},a_{k+2}\dots a_{n}\)项代入\(x_k\)后值为0。那么所求\(a_k\)=\[\frac{y_k-()}{\prod_{i=0}^{k-1}x_k-x_i}\],在假设\(x_k\)为等距结点的时候,\(x_k\)可以表示为\(x_k=x_0+kh\),其中h为步长。那么所求\(a_k\)近似可表示为\(a_k=\frac{y_k-()}{k!h^k}\)。
定义 f(x)在\(x_k\)处的向前差分为\(\Delta y=y_{k+1}-y_k\),相应的我们可以定义\(\Delta y\)的差分,也就是y的二阶向前差分\(\Delta^{2} y_k=\Delta y_{k+1}-\Delta y_k\); 这样,类似我们可以定义y的m阶向前差分\(\Delta ^{m} y_k = \Delta ^{m-1} y_{k+1} -\Delta ^{m-1} y_k\)。在等距结点\(x=x_0+kh\) 的条件下我们可以利用向前差分来导出系数的计算。
4.牛顿向前差分公式系数计算
由\(N_n(x_0)=y_0\)可以得到\(a_0\)的表达式为\(a_0=y_0\),这样我们可以定义y的零阶向前差分\(\Delta ^0 y=y0\),这样利用3中推出的\(a_k\)表达式可以将这个结果化为这样的形式\(a_0=\frac{\Delta^0 y_0}{0!h^0}\)。我们再来看\(a_1\)的表达式。因为\(N_n(x_1)=y_1=a_0+a_1(x_1-x_0)\),而\(a_0\)为\(y_0\),则\(a_1=\frac{y_1-y_0}{x_1-x_0}=\frac{\Delta^1 y_0}{1!h^1}\)。同样的,我们来计算\(a_2\)的表达式。\(N_n(x_2)=a_0+a_1(x_2-x_0)+a_2(x2-x_0)(x_2-x_1)=y_2\),而又因为\(x_2-x_0=2h,a1\)可以表示成\(\frac{\Delta y_0}{h}\),因而可以将\(a_2\)表示为\(a_2=\frac{y2-y0-\frac{\Delta y_0}{h}2h}{(x_2-x_0)(x_2-x_1)}=\frac{y_2-y_0-2(y_1-y_0)}{2!h^2}=\frac{(y_2-y_1)-(y_1-y_0)}{2!h^2}=\frac{\Delta^2 y_0}{2!h^2}\),这样规律就很明显了。事实上,通过计算我们可以得到\(a_k\)的表达式为\(a_k=\frac{\Delta ^k y_0}{k!h^k}(k=0,1,\cdots {n-1},{n})\),于是我们可以将牛顿多项式完整的表达出来了---\(N_n(x)=\frac{\Delta ^0 y_0}{0!h^0}+\frac{\Delta ^1 y_0}{1!h^1}(x-x_0)+\frac{\Delta ^2 y_0}{2!h^2}(x-x_0)(x-x_1)+\cdots+\frac{\Delta ^k y_0}{k!h^k}(x-x_0)(x-x1)\cdots(x-x_{k-1})+\)\(\cdots+\frac{\Delta ^n y_0}{n!h^n}(x-x_0)(x-x_1)\cdots(x-x_{n-1})\)。这样我们就得到了牛顿插值公式的完整表达,通过计算\(y_0\)的n阶向前差分就可以得到结果了。
5.如何再化简?
我们再x等距取样条件下得到了牛顿插值多项式的表达式,同样的,可以充分利用这个条件。也就是设x=\(x_0+th\),其中h为步长。这样\[\sum_{i=0}^{k-1}(x-x_i)=th*(t-1)h*\cdots*(t-k+1)h=A_t^kh^k\],而系数\(a_k=\frac{\Delta ^k y_0}{k!h^k}\),所要整合式子可以得到\(N_n(x_0+th)=y_0+t\Delta y_0+\frac{t(t-1)\Delta ^2 y_0}{2!}+\cdots+\frac{t(t-1)\cdots(t-n+1\Delta ^ny_0)}{n!}\)=\(\sum_{k=0}^{n}\frac{A_t^k \Delta ^k y_0}{k!}\)
最后说明
这里只是利用了等距取点条件计算的牛顿插值公式表达式,实际情况下取的点不一定等距,因此,在不等距的条件下相应还要计算方法(后面我会逐渐整理的)。除此之外,还可以用向后差分,中心差分法,限于时间,往后再整理了。
等距结点下的Newton插值多项式系数计算(向前差分)的更多相关文章
- 数值分析案例:Newton插值预测2019城市(Asian)温度、Crout求解城市等温性的因素系数
数值分析案例:Newton插值预测2019城市(Asian)温度.Crout求解城市等温性的因素系数 文章目录 数值分析案例:Newton插值预测2019城市(Asian)温度.Crout求解城市等温 ...
- Newton插值的C++实现
Newton(牛顿)插值法具有递推性,这决定其性能要好于Lagrange(拉格朗日)插值法.其重点在于差商(Divided Difference)表的求解. 步骤1. 求解差商表,这里采用非递归法(看 ...
- jquery清除某一结点下的子节点
jquery清除某一结点下的子节点:这个情况多用于数据的加载中,如果当执行某一操作之后,想重新加载页面,但是又不想整个页面都重新加载,这个时候就可以使用该方法, case: $("#ta ...
- 实现Linux下dc的功能,计算后缀表达式的值
提交测试截图和码云练习项目链接,实现Linux下dc的功能,计算后缀表达式的值 -将运算符写在两个操作数之后的表达式称为"后缀表达式",如上面的中缀表达式可转换为后缀表达式1 2 ...
- Fluent批处理之--windows下多个任务的计算 【转载】
转载自http://jingcao830828.blog.163.com/blog/static/10320833620103633624506/ 1.同维多任务的连续计算 对于工程应用来说,计算精度 ...
- [math][mathematica] archlinux 下 mathematica 的安装 (科学计算软件 mathematica/matlab/sagemath)
ONLINE: http://www.wolframalpha.com/ GPL: segamath: http://www.sagemath.org/ famous and not free: ma ...
- c语言下的变量类型及计算
源码 补码 反码 机器数:一个数在计算机中的二进制表示形式, 叫做这个数的机器数.机器数是带符号的,在计算机用一个数的最高位存放符号, 正数为0, 负数为1. 真值:第一位是符号位,将带符号位的 ...
- 多项式函数插值:全域多项式插值(一)单项式基插值、拉格朗日插值、牛顿插值 [MATLAB]
全域多项式插值指的是在整个插值区域内形成一个多项式函数作为插值函数.关于多项式插值的基本知识,见“计算基本理论”. 在单项式基插值和牛顿插值形成的表达式中,求该表达式在某一点处的值使用的Horner嵌 ...
- 插值方法 - Newton向前向后等距插值
通常我们在求插值节点的开头部分插值点附近函数值时,使用Newton前插公式:求插值节点的末尾部分插值点附近函数值时,使用Newton后插公式. 代码: 1 # -*- coding: utf-8 -* ...
随机推荐
- Grafana 6.4 正式发布!
原文链接:Grafana 6.4 正式发布! 2019 年 10 月 2 日,也就是国内小伙伴们的放假期间,Grafana 实验室正式发布了 Grafana 6.4 版本.这个版本主要围绕数据模型和指 ...
- Shiro集成SSM基于URL权限管理(一)
学习了shiro之后,我们就可以说尝试把shiro加入ssm中,并做一套基于URL的权限管理. 其他的准备工作就不多说了,直接动手操作,看到效果再去理解. 表结构 执行如下,数据库名字可以自行修改,不 ...
- 数据库审计 DBAudit - Yearning 最新版
数据库审计 DBAudit 2019/09/26 Chenxin 数据库审计 基本概念 数据库审计(简称DBAudit)能够实时记录网络上的数据库活动,对数据库操作进行细粒度审计的合规性管理,对数据库 ...
- Linux修改屏幕分辨率至2K
使用命令:cvt,与 xrandr 使用cvt命令查看分辨率配置: Modeline后边分别是 modeName 以及 详细的配置 linklee@linklee-270E5G-270E5U:~$ c ...
- Docker service update更新不成功的问题
一.基本信息 1.Docker版本 [root@ip---- ~]# docker --version Docker version , build a872fc2f86 2.系统版本 [root ...
- vue父子组件钩子函数的执行顺序
加载渲染过程 父beforeCreate->父created->父beforeMount->子beforeCreate->子created->子beforeMount-& ...
- ThoughtWorks 面试三连挂,以后再也不去了
先说我吧,之前在外企呆过两年,那时Team的很多同事都去了ThoughtWorks,所以有一种情怀,只要有机会我就去面试...之前在Team里对我的评价也很高(不是我说的),现在也是公司的技术总监,总 ...
- vue中图片放大镜功能
仿淘宝详情页图片鼠标移过去可对图片放大显示在右侧 效果图如下图,此功能支持PC端与移动端 接下来进入代码实现环节: 先准备两张图片,一张小图片叫 '土味.jpg',大小160*91:一张大图片叫 ' ...
- java架构之路-(Redis专题)Redis的主从、哨兵和集群
我们使用的redis,单机的绝对做不到高可用的,万一单机的redis宕机了,就没有备用的了,我们可以采用集群的方式来保证我们的高可用操作. 主从架构 大致就是这样的,一个主节点,两个从节点(一般两个就 ...
- firefox 实用插件推荐和使用
1.firefox安装插件 2.firebug 3.Cookie editor 4.Tamper data 5.user agent switcher 6.hackbar 7.httpfox抓包工具 ...