\(\\\)

\(Description\)


给出一个长为\(N\)的序列,\(M\)次询问区间\([L_i,R_i]\)内不同数字的个数。

  • \(N\in [1,5\times 10^4]\),\(M\in [1,2\times 10^5]\),\(L_i,R_i\in [1,N]\)

\(\\\)

\(Solution\)


  • 离线做法,将询问按右端点从小到大排序。
  • 对下标开树状数组,每次添加数字在该位置\(+1\),在上一次该数字出现的位置\(-1\),然后将能回答询问以前缀和相减的方式都回答了。
  • 关于正确性,如上做法可以看成只为每个颜色保留最后一次出现的标记,因为将询问排序过,所以更新的树状数组所求出的答案一定是对于当前右端点是合法的。

\(\\\)

\(Code\)


#include<cmath>
#include<cstdio>
#include<cctype>
#include<cstdlib>
#include<cstring>
#include<iostream>
#include<algorithm>
#define R register
#define N 500010
#define M 200010
using namespace std; int n,m,clr[N],ans[M],last[1000010]; struct tasks{int l,r,num,ans;}tsk[M]; struct BIT{
int c[N];
BIT(){memset(c,0,sizeof(c));}
inline int lowbit(int x){return x&(-x);}
inline void add(int x,int k){
for(R int i=x;i<=n;i+=lowbit(i)) c[i]+=k;
}
inline int sum(int x){
int res=0;
for(R int i=x;i;i-=lowbit(i)) res+=c[i];
return res;
}
}bit; inline int rd(){
int x=0;
char c=getchar();
while(!isdigit(c)) c=getchar();
while(isdigit(c)){
x=(x<<1)+(x<<3)+(c^48);
c=getchar();
}
return x;
} inline bool cmp(tasks a,tasks b){
return (a.r==b.r)?(a.l<b.l):(a.r<b.r);
} int main(){
n=rd();
for(R int i=1;i<=n;++i) clr[i]=rd();
m=rd();
for(R int i=1;i<=m;++i) {
tsk[i].l=rd();
tsk[i].r=rd();
tsk[i].num=i;
}
sort(tsk+1,tsk+1+m,cmp);
int now=1;
for(R int i=1;i<=n;++i){
bit.add(i,1);
if(last[clr[i]]) bit.add(last[clr[i]],-1);
last[clr[i]]=i;
while(i==tsk[now].r){
tsk[now].ans=bit.sum(i)-bit.sum(tsk[now].l-1);
++now;
}
if(now>m)break;
}
for(R int i=1;i<=m;++i) ans[tsk[i].num]=tsk[i].ans;
for(R int i=1;i<=m;++i) printf("%d\n",ans[i]);
return 0;
}

\(\\\)

\(Extend\)


将询问改为,求区间内至少出现过两次的不同数字个数。

\(\\\)

  • 注意到只有询问区间内出现两次数字才是有效的,但仿照之前的写法如果直接标记第二次出现的数,并取消第一次出现的数却会出错,是因为可能所谓的第一次出现的数并不在询问区间里,而所谓的第二个数却被算进了答案。
  • 于是做法就改为记录两次上一个出现的位置,每次出现一个数将两次前出现该数的位置\(-1\),一次前出现的位置\(+1\)即可,这样能保证一个数只算了一次,并且出现两次的数一定打过标记。

\(\\\)

\(Code\)


#include<cmath>
#include<cstdio>
#include<cctype>
#include<cstring>
#include<cstdlib>
#include<iostream>
#include<algorithm>
#define N 2000010
#define R register
#define gc getchar
using namespace std; inline int rd(){
int x=0; bool f=0; char c=gc();
while(!isdigit(c)){if(c=='-')f=1;c=gc();}
while(isdigit(c)){x=(x<<1)+(x<<3)+(c^48);c=gc();}
return f?-x:x;
} int n,c,m,s[N],lst1[N],lst2[N],ans[N]; struct query{int l,r,num;}q[N]; inline bool cmp(query x,query y){
return x.r==y.r?x.l<y.l:x.r<y.r;
} struct BIT{
int c[N];
BIT(){memset(c,0,sizeof(c));}
inline int lowbit(int x){return x&-x;}
inline void add(int p,int x){
for(;p<=n;p+=lowbit(p)) c[p]+=x;
}
inline int sum(int p){
int res=0;
for(;p;p-=lowbit(p)) res+=c[p];
return res;
}
}bit; int main(){
n=rd(); c=rd(); m=rd();
for(R int i=1;i<=n;++i) s[i]=rd();
for(R int i=1;i<=m;++i){
q[i].l=rd(); q[i].r=rd(); q[i].num=i;
}
sort(q+1,q+1+m,cmp);
for(R int i=1,top=1;i<=n;++i){
if(lst2[s[i]]) bit.add(lst2[s[i]],-1);
if(lst1[s[i]]){bit.add(lst1[s[i]],1);}
lst2[s[i]]=lst1[s[i]]; lst1[s[i]]=i;
while(q[top].r==i){
ans[q[top].num]=bit.sum(i)-bit.sum(q[top].l-1);
++top;
}
}
for(R int i=1;i<=m;++i) printf("%d\n",ans[i]);
return 0;
}

[ SDOI 2009 ] HH的项链 & [ HEOI 2012 ] 采花的更多相关文章

  1. [BZOJ 2743] [HEOI 2012] 采花

    Description 萧芸斓是Z国的公主,平时的一大爱好是采花.今天天气晴朗,阳光明媚,公主清晨便去了皇宫中新建的花园采花.花园足够大,容纳了 \(n\) 朵花,花有 \(c\) 种颜色(用整数 \ ...

  2. [SDOI 2009]HH的项链

    Description HH有一串由各种漂亮的贝壳组成的项链.HH相信不同的贝 壳会带来好运,所以每次散步完后,他都会随意取出一段贝壳,思考它们所表达的含义.HH不断地收集新的贝壳,因此,他的项链变得 ...

  3. 解题:HEOI 2012 采花

    题面 题外话:LYD说他当时看错题了,考场爆零了,然后有了作诗这道题=.= 离线处理询问,按右端点递增排序,然后对于每种花$flw[i]$,我们求一个$pre[flw[i]]$表示这种花上一次出现的位 ...

  4. [HEOI 2012] 采花

    [题目链接] https://www.lydsy.com/JudgeOnline/problem.php?id=2743 [算法] 首先预处理nxt[]数组 , 其中 , nxt[i]表示下一个和i号 ...

  5. SDOI HH的项链 HEOI采花

    题目大意: SDOI求一个区间内只出现一次的数的个数.多组询问. HEOI 求一个区间内出现至少两次的数的个数.多组询问. SDOI HH'neckplace如果每次询问都是1..r的话,那么我们只要 ...

  6. BZOJ 1878 SDOI 2009 HH项链 树状数组 + 脱机处理

    标题效果:一些珠子项链.珠具有不同的颜色.我们问了很多次有多少种不同的颜色有过一段范围. 思考:这个问题让我学会聪明的离线实践.按左端点排序问题.加工出来的位置每种颜色首次出现.每一种颜色的下一次出现 ...

  7. [SDOI 2009]HH去散步

    Description HH有个一成不变的习惯,喜欢饭后百步走.所谓百步走,就是散步,就是在一定的时间 内,走过一定的距离. 但 是同时HH又是个喜欢变化的人,所以他不会立刻沿着刚刚走来的路走回. 又 ...

  8. [BZOJ 1875] [SDOI 2009] HH去散步【矩阵乘法】

    题目链接:BZOJ - 1875 题目分析: 这道题如果去掉“不会立刻沿着刚刚走来的路走回”的限制,直接用邻接矩阵跑矩阵乘法就可以了.然而现在加了这个限制,建图的方式就要做一些改变.如果我们把每一条边 ...

  9. sdoi 2009 HH去散步 矩阵乘

    如果没有题里的"不会立刻沿着刚刚走来的路走回"限制,那么直接矩乘计算k步的方案数 但加了这个限制,就不能以点来矩乘了,考虑边数<=60,如果以边建邻接矩阵呢?? 先拆边,再把 ...

随机推荐

  1. Java8-如何将List转变为逗号分隔的字符串--https://blog.csdn.net/benjaminlee1/article/details/72860845

    Java8-如何将List转变为逗号分隔的字符串 https://blog.csdn.net/benjaminlee1/article/details/72860845

  2. 51. spring boot属性文件之多环境配置【从零开始学Spring Boot】

    原本这个章节是要介绍<log4j多环境不同日志级别的控制的>但是没有这篇文章做基础的话,学习起来还是有点难度的,所以我们先一起了解下spring boot属性文件之多环境配置,当然文章中也 ...

  3. Hihocoder 1329(splay)

    Problem 平衡树 Splay 题目大意 维护一个数列,支持三种操作. 操作1:添加一个数x. 操作2:询问不超过x的最大的数. 操作三:删除大小在区间[a,b]内的数. 解题分析 和上一题相比, ...

  4. JavaMail发送邮件后再通过JavaMail接收格式问题

    复杂邮件发送问题 转载请标明出处!https://www.cnblogs.com/dream-saddle/p/10978113.html 关于 JavaMail 如何发送邮件这里就不赘述了,网上有很 ...

  5. ubuntu tweak Install

    ubuntu tweak 1:增加PPA源 sudo add-apt-repository ppa:tualatrix/ppa 2:編輯源列表sudo gedit /etc/apt/sources.l ...

  6. 自己定义控件:onDraw 方法实现仿 iOS 的开关效果

    概述 本文主要解说怎样在 Android 下实现高仿 iOS 的开关按钮,并不是是在 Android 自带的 ToggleButton 上改动,而是使用 API 提供的 onDraw.onMeasur ...

  7. 在Ubuntu平台上创建Cordova Camera HTML5应用

    在这篇文章中,我们将具体介绍怎样使用Cordova Camera HTML5 应用.很多其它关于Cordova的开发指南,开发人员能够參考文章"the Cordova Guide" ...

  8. 百练1088:滑雪 【DP】+【DFS】

    总Time Limit: 1000ms Memory Limit: 65536kB Description Michael喜欢滑雪百这并不奇怪, 由于滑雪的确非常刺激.但是为了获得速度,滑的区域必须向 ...

  9. zedboard 流水灯

    #include"xparameters.h"/* Peripheral parameters 外围的參数 */ #include"xgpio.h"/* GPI ...

  10. SoapUI项目书写自我规范

    -->Assertions 判断某个节点存在(_input_name, _button_name) -->Resource 文件夹命名 值去掉红色部分信息 https://mercury- ...