Deep learning网络调参技巧
参数初始化
下面几种方式,随便选一个,结果基本都差不多。但是一定要做。否则可能会减慢收敛速度,影响收敛结果,甚至造成Nan等一系列问题。
n_in为网络的输入大小,n_out为网络的输出大小,n为n_in或(n_in+n_out)*0.5
Xavier初始法论文:http://jmlr.org/proceedings/papers/v9/glorot10a/glorot10a.pdf
He初始化论文:https://arxiv.org/abs/1502.01852
uniform均匀分布初始化:
w = np.random.uniform(low=-scale, high=scale, size=[n_in,n_out])- Xavier初始法,适用于普通激活函数(tanh,sigmoid):scale = np.sqrt(3/n)
- He初始化,适用于ReLU:scale = np.sqrt(6/n)
normal高斯分布初始化:
w = np.random.randn(n_in,n_out) * stdev # stdev为高斯分布的标准差,均值设为0- Xavier初始法,适用于普通激活函数 (tanh,sigmoid):stdev = np.sqrt(n)
- He初始化,适用于ReLU:stdev = np.sqrt(2/n)
svd初始化:对RNN有比较好的效果。参考论文:https://arxiv.org/abs/1312.6120
数据预处理方式
- zero-center ,这个挺常用的.(在此基础上可得到BN)
X -= np.mean(X, axis = 0) # zero-center
X /= np.std(X, axis = 0) # normalize - PCA whitening,这个用的比较少.
训练技巧
- 要做梯度归一化,即算出来的梯度除以minibatch size
- clip c(梯度裁剪): 限制最大梯度,防止梯度爆炸。当参数向量的L2范数value = sqrt(w1^2+w2^2….)超过一个特定阈值时对参数向量的梯度进行标准化,新梯度=梯度 * 阈值 / 梯度L2范数
- dropout对小数据防止过拟合有很好的效果,值一般设为0.5,小数据上dropout+sgd在我的大部分实验中,效果提升都非常明显.因此可能的话,建议一定要尝试一下。 dropout的位置比较有讲究, 对于RNN,建议放到输入->RNN与RNN->输出的位置. 关于RNN如何用dropout,可以参考这篇论文:http://arxiv.org/abs/1409.2329
- adam,adadelta等,在小数据上,我这里实验的效果不如sgd, sgd收敛速度会慢一些,但是最终收敛后的结果,一般都比较好。如果使用sgd的话,可以选择从1.0或者0.1的学习率开始,隔一段时间,在验证集上检查一下,如果cost没有下降,就对学习率减半. 我看过很多论文都这么搞,我自己实验的结果也很好. 当然,也可以先用ada系列先跑,最后快收敛的时候,更换成sgd继续训练.同样也会有提升.据说adadelta一般在分类问题上效果比较好,adam在生成问题上效果比较好。
- 除了gate之类的地方,需要把输出限制成0-1之外,尽量不要用sigmoid,可以用tanh或者relu之类的激活函数.1. sigmoid函数在-4到4的区间里,才有较大的梯度。之外的区间,梯度接近0,很容易造成梯度消失问题。2. 输入0均值,sigmoid函数的输出不是0均值的。
- rnn的dim和embdding size,一般从128上下开始调整. batch size,一般从128左右开始调整.batch size合适最重要,并不是越大越好.
- word2vec初始化,在小数据上,不仅可以有效提高收敛速度,也可以可以提高结果.
- 尽量对数据做shuffle
- LSTM 的forget gate的bias,用1.0或者更大的值做初始化,可以取得更好的结果,来自这篇论文:http://jmlr.org/proceedings/papers/v37/jozefowicz15.pdf, 我这里实验设成1.0,可以提高收敛速度.实际使用中,不同的任务,可能需要尝试不同的值.
- Batch Normalization据说可以提升效果,不过我没有尝试过,建议作为最后提升模型的手段,参考论文:Accelerating Deep Network Training by Reducing Internal Covariate Shift
- 如果你的模型包含全连接层(MLP),并且输入和输出大小一样,可以考虑将MLP替换成Highway Network,我尝试对结果有一点提升,建议作为最后提升模型的手段,原理很简单,就是给输出加了一个gate来控制信息的流动,详细介绍请参考论文: http://arxiv.org/abs/1505.00387
ensemble
Ensemble是论文刷结果的终极核武器,深度学习中一般有以下几种方式
- 同样的参数,不同的初始化方式
- 不同的参数,通过cross-validation,选取最好的几组
同样的参数,模型训练的不同阶段,即不同迭代次数的模型。
不同的模型,进行线性融合. 例如RNN和传统模型.
从深到细分阶段调参
实践中,一般先进行初步范围搜索,然后根据好结果出现的地方,再缩小范围进行更精细的搜索。
- 建议先参考相关论文,以论文中给出的参数作为初始参数。至少论文中的参数,是个不差的结果。
- 如果找不到参考,那么只能自己尝试了。可以先从比较重要,对实验结果影响比较大的参数开始,同时固定其他参数,得到一个差不多的结果以后,在这个结果的基础上,再调其他参数。例如学习率一般就比正则值,dropout值重要的话,学习率设置的不合适,不仅结果可能变差,模型甚至会无法收敛。
- 如果实在找不到一组参数,可以让模型收敛。那么就需要检查,是不是其他地方出了问题,例如模型实现,数据等等。可以参考我写的深度学习网络调试技巧
提高速度
调参只是为了寻找合适的参数,而不是产出最终模型。一般在小数据集上合适的参数,在大数据集上效果也不会太差。因此可以尝试对数据进行精简,以提高速度,在有限的时间内可以尝试更多参数。
- 对训练数据进行采样。例如原来100W条数据,先采样成1W,进行实验看看。
- 减少训练类别。例如手写数字识别任务,原来是10个类别,那么我们可以先在2个类别上训练,看看结果如何。
超参数范围
建议优先在对数尺度上进行超参数搜索。比较典型的是学习率和正则化项,我们可以从诸如0.001 0.01 0.1 1 10,以10为阶数进行尝试。因为他们对训练的影响是相乘的效果。不过有些参数,还是建议在原始尺度上进行搜索,例如dropout值: 0.3 0.5 0.7)。
经验参数
- learning rate: 1 0.1 0.01 0.001, 一般从1开始尝试。很少见learning rate大于10的。学习率一般要随着训练进行衰减。衰减系数一般是0.5。 衰减时机,可以是验证集准确率不再上升时,或固定训练多少个周期以后。
不过更建议使用自适应梯度的办法,例如adam,adadelta,rmsprop等,这些一般使用相关论文提供的默认值即可,可以避免再费劲调节学习率。对RNN来说,有个经验,如果RNN要处理的序列比较长,或者RNN层数比较多,那么learning rate一般小一些比较好,否则有可能出现结果不收敛,甚至Nan等问题。 - 网络层数: 先从1层开始。
- 每层结点数: 16 32 128,超过1000的情况比较少见。超过1W的从来没有见过。
- batch size: 128上下开始。batch size值增加,的确能提高训练速度。但是有可能收敛结果变差。如果显存大小允许,可以考虑从一个比较大的值开始尝试。因为batch size太大,一般不会对结果有太大的影响,而batch size太小的话,结果有可能很差。
- clip c(梯度裁剪): 限制最大梯度,其实是value = sqrt(w1^2+w2^2….),如果value超过了阈值,就算一个衰减系系数,让value的值等于阈值: 5,10,15
- dropout: 0.5
- L2正则:1.0,超过10的很少见。
- 词向量embedding大小:128,256
- 正负样本比例: 这个是非常忽视,但是在很多分类问题上,又非常重要的参数。很多人往往习惯使用训练数据中默认的正负类别比例,当训练数据非常不平衡的时候,模型很有可能会偏向数目较大的类别,从而影响最终训练结果。除了尝试训练数据默认的正负类别比例之外,建议对数目较小的样本做过采样,例如进行复制。提高他们的比例,看看效果如何,这个对多分类问题同样适用。
在使用mini-batch方法进行训练的时候,尽量让一个batch内,各类别的比例平衡,这个在图像识别等多分类任务上非常重要。
自动调参
人工一直盯着实验,毕竟太累。自动调参当前也有不少研究。下面介绍几种比较实用的办法:
- Gird Search. 这个是最常见的。具体说,就是每种参数确定好几个要尝试的值,然后像一个网格一样,把所有参数值的组合遍历一下。优点是实现简单暴力,如果能全部遍历的话,结果比较可靠。缺点是太费时间了,特别像神经网络,一般尝试不了太多的参数组合。
- Random Search。Bengio在Random Search for Hyper-Parameter Optimization中指出,Random Search比Gird Search更有效。实际操作的时候,一般也是先用Gird Search的方法,得到所有候选参数,然后每次从中随机选择进行训练。
- Bayesian Optimization. 贝叶斯优化,考虑到了不同参数对应的实验结果值,因此更节省时间。和网络搜索相比简直就是老牛和跑车的区别。具体原理可以参考这个论文: Practical Bayesian Optimization of Machine Learning Algorithms ,这里同时推荐两个实现了贝叶斯调参的Python库,可以上手即用:
- jaberg/hyperopt, 比较简单。
- fmfn/BayesianOptimization, 比较复杂,支持并行调参。
https://zhuanlan.zhihu.com/p/20767428
https://zhuanlan.zhihu.com/p/24720954
Deep learning网络调参技巧的更多相关文章
- [转] TextCNN调参技巧
原文地址: https://plushunter.github.io/2018/02/26/%E8%87%AA%E7%84%B6%E8%AF%AD%E8%A8%80%E5%A4%84%E7%90%86 ...
- [调参]CV炼丹技巧/经验
转自:https://www.zhihu.com/question/25097993 我和@杨军类似, 也是半路出家. 现在的工作内容主要就是使用CNN做CV任务. 干调参这种活也有两年时间了. 我的 ...
- 01.CNN调参
转载:调参是个头疼的事情,Yann LeCun.Yoshua Bengio和Geoffrey Hinton这些大牛为什么能够跳出各种牛逼的网络? 下面一些推荐的书和文章:调参资料总结Neural Ne ...
- xgboost&lightgbm调参指南
本文重点阐述了xgboost和lightgbm的主要参数和调参技巧,其理论部分可见集成学习,以下内容主要来自xgboost和LightGBM的官方文档. xgboost Xgboost参数主要分为三大 ...
- 深度学习模型训练技巧 Tips for Deep Learning
一.深度学习建模与调试流程 先看训练集上的结果怎么样(有些机器学习模型没必要这么做,比如决策树.KNN.Adaboost 啥的,理论上在训练集上一定能做到完全正确,没啥好检查的) Deep Learn ...
- Spark MLlib Deep Learning Deep Belief Network (深度学习-深度信念网络)2.3
Spark MLlib Deep Learning Deep Belief Network (深度学习-深度信念网络)2.3 http://blog.csdn.net/sunbow0 第二章Deep ...
- Deep Learning基础--理解LSTM网络
循环神经网络(RNN) 人们的每次思考并不都是从零开始的.比如说你在阅读这篇文章时,你基于对前面的文字的理解来理解你目前阅读到的文字,而不是每读到一个文字时,都抛弃掉前面的思考,从头开始.你的记忆是有 ...
- Spark MLlib Deep Learning Deep Belief Network (深度学习-深度信念网络)2.1
Spark MLlib Deep Learning Deep Belief Network (深度学习-深度信念网络)2.1 http://blog.csdn.net/sunbow0 Spark ML ...
- 调参侠的末日? Auto-Keras 自动搜索深度学习模型的网络架构和超参数
Auto-Keras 是一个开源的自动机器学习库.Auto-Keras 的终极目标是允许所有领域的只需要很少的数据科学或者机器学习背景的专家都可以很容易的使用深度学习.Auto-Keras 提供了一系 ...
随机推荐
- 【Java_基础】cmd下使用java命令运行class文件提示“错误:找不到或无法加载主类“的问题分析
1.问题如下 当在命令行使用java命令执行字节码文件时提示“错误:找不到或无法加载主类” 2. 问题分析 这是由于在运行时类的全名应该是包名+类名,例如在包net.xsoftlab.baike下的类 ...
- GIMP语言设置
初学GIMP,需要设置语言:点击 编辑 - 首选项 其他的配置如: 配置快捷键 自己熟悉吧!
- Vue—事件修饰符
Vue事件修饰符 Vue.js 为 v-on 提供了事件修饰符来处理 DOM 事件细节,如:event.preventDefault() 或 event.stopPropagation(). Vue. ...
- \include\configs\mx6q_sabresd.h
/* * Copyright (C) 2012 Freescale Semiconductor, Inc. * * Configuration settings for the MX6Q Sabre ...
- JAVA面向过程VS面向对象
面向过程 面向过程是一种自顶向下的编程,强调行为过程,可扩展性可维护性差. 优点: 性能比面向对象高,因为类调用时需要实例化,开销比较大,比较消耗资源. 单片机.嵌入式开发.Linux/Unix等一般 ...
- java foreach的实现原理
http://blog.csdn.net/moqihao/article/details/51078464 本质是通过集合的iterator方式实现,所以再使用foreach集合,要强制判断集合的是否 ...
- [adb 命令学习篇] adb 命令总结
https://testerhome.com/topics/2565 Android 常用 adb 命令总结 针对移动端 Android 的测试, adb 命令是很重要的一个点,必须将常用的 adb ...
- [android 应用开发]android 分层
1 应用层, 2 应用框架层(框架是所有开发人员共同使用和遵守的约定) 3 系统运行库层 4 linux内核层
- 更新yum源导致yum不可用
当安装和yum配置相关的包后报yum模块找不到 yum install -y yum-utils device-mapper-persistent-data lvm2 yum list|grep yu ...
- BZOJ2245 [SDOI2011]工作安排 【费用流】
题目 你的公司接到了一批订单.订单要求你的公司提供n类产品,产品被编号为1~n,其中第i类产品共需要Ci件.公司共有m名员工,员工被编号为1~m员工能够制造的产品种类有所区别.一件产品必须完整地由一名 ...