题面

传送门

题解

这题差不多

//minamoto
#include<bits/stdc++.h>
#define R register
#define pb push_back
#define inline __inline__ __attribute__((always_inline))
#define fp(i,a,b) for(R int i=(a),I=(b)+1;i<I;++i)
#define fd(i,a,b) for(R int i=(a),I=(b)-1;i>I;--i)
#define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
template<class T>inline bool cmax(T&a,const T&b){return a<b?a=b,1:0;}
template<class T>inline bool cmin(T&a,const T&b){return a>b?a=b,1:0;}
using namespace std;
char buf[1<<21],*p1=buf,*p2=buf;
inline char getc(){return p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++;}
int read(){
R int res,f=1;R char ch;
while((ch=getc())>'9'||ch<'0')(ch=='-')&&(f=-1);
for(res=ch-'0';(ch=getc())>='0'&&ch<='9';res=res*10+ch-'0');
return res*f;
}
const int N=1e5+5;
typedef long long ll;
vector<int>vec[N];int mu[N],p[N],vis[N],a[N],n,q,m;ll f[N];
void init(int n=N-5){
mu[1]=1;
fp(i,2,n){
if(!vis[i])p[++m]=i,mu[i]=-1;
for(R int j=1;j<=m&&1ll*i*p[j]<=n;++j){
vis[i*p[j]]=1;
if(i%p[j]==0)break;
mu[i*p[j]]=-mu[i];
}
}
fp(i,1,n)if(mu[i])for(R int j=i;j<=n;j+=i)vec[j].pb(i);
}
int main(){
// freopen("testdata.in","r",stdin);
init();n=read(),m=read();
fp(i,1,n)a[i]=read();
fp(i,1,n)for(R int j=i;j<=n;j+=i)f[i]+=a[j];
for(int op,x,y;m;--m){
op=read(),x=read();
if(op&1){
y=read();if(a[x]==y)continue;
fp(i,0,vec[x].size()-1)if(mu[vec[x][i]])f[vec[x][i]]+=y-a[x];
a[x]=y;
}else{
ll res=0;
fp(i,0,vec[x].size()-1)if(mu[vec[x][i]])res+=f[vec[x][i]]*mu[vec[x][i]];
printf("%lld\n",res);
}
}
return 0;
}

[51nod]1678 lyk与gcd(莫比乌斯反演)的更多相关文章

  1. 51nod 1678 lyk与gcd | 容斥原理

    51nod 200题辣ψ(`∇´)ψ !庆祝! 51nod 1678 lyk与gcd | 容斥原理 题面 这天,lyk又和gcd杠上了. 它拥有一个n个数的数列,它想实现两种操作. 1:将 ai 改为 ...

  2. 51 Nod 1678 lyk与gcd

    1678 lyk与gcd 基准时间限制:2 秒 空间限制:131072 KB 分值: 80 难度:5级算法题 这天,lyk又和gcd杠上了.它拥有一个n个数的数列,它想实现两种操作. 1:将  ai  ...

  3. 51 Nod 1678 lyk与gcd(容斥原理)

    1678 lyk与gcd  基准时间限制:2 秒 空间限制:131072 KB 分值: 80 难度:5级算法题  收藏  关注 这天,lyk又和gcd杠上了. 它拥有一个n个数的数列,它想实现两种操作 ...

  4. [BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块)

    [BZOJ 2820] YY的gcd(莫比乌斯反演+数论分块) 题面 给定N, M,求\(1\leq x\leq N, 1\leq y\leq M\)且gcd(x, y)为质数的(x, y)有多少对. ...

  5. 1678 lyk与gcd

    1678 lyk与gcd 基准时间限制:2 秒 空间限制:131072 KB 这天,lyk又和gcd杠上了.它拥有一个n个数的数列,它想实现两种操作. 1:将  ai 改为b.2:给定一个数i,求所有 ...

  6. HDU1695 GCD(莫比乌斯反演)

    传送门 看了1个多小时,终于懂了一点了 题目大意:给n,m,k.求gcd(x,y) = k(1<=x<=n, 1<=y<=m)的个数 思路:令F(i)表示i|gcd(x,y)的 ...

  7. hdu 1695 GCD 莫比乌斯反演入门

    GCD 题意:输入5个数a,b,c,d,k;(a = c = 1, 0 < b,d,k <= 100000);问有多少对a <= p <= b, c <= q <= ...

  8. 洛谷P2257 YY的GCD 莫比乌斯反演

    原题链接 差不多算自己推出来的第一道题QwQ 题目大意 \(T\)组询问,每次问你\(1\leqslant x\leqslant N\),\(1\leqslant y\leqslant M\)中有多少 ...

  9. HYSBZ - 2818 Gcd (莫比乌斯反演)

    莫比乌斯反演的入门题,设 \(F(x): gcd(i,j)\%x=0\) 的对数,\(f(x): gcd(i,j)=x\)的对数. 易知\[F(p) = \lfloor \frac{n}{p} \rf ...

随机推荐

  1. [SPOJ7258]Lexicographical Substring Search

    [SPOJ7258]Lexicographical Substring Search 试题描述 Little Daniel loves to play with strings! He always ...

  2. [luoguP1010] 幂次方 ^(* ̄(oo) ̄)^

    传送门 递归.. 代码 #include <cstdio> int n; int bit[15]; inline void solve(int x) { int i, f = 0; if( ...

  3. bzoj 3173 [Tjoi2013]最长上升子序列 (treap模拟+lis)

    [Tjoi2013]最长上升子序列 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 2213  Solved: 1119[Submit][Status] ...

  4. Python安装与基本数据类型

    人生苦短,我选Python. Python比其他的语言来说真的简洁多了,很多时候想做的东西都有对应的模块可以导入,平时玩点小东西真心不错. 首先讲一下安装,其实没什么好讲的,点点点点点,完事. 这里的 ...

  5. Ubuntu 16.04出现Can't open /etc/rc.d/init.d/functions的问题解决

    /etc/rc.d/init.d/functions是CentOS的位置,Ubuntu对应:/lib/lsb/init-functions 参考: https://unix.stackexchange ...

  6. 什么是Wiki?

    Wiki一词来源于夏威夷语的“wee kee wee kee”, 发音wiki, 原本是“快点快点”的意思,被译为“维基”或“维客”.一种多人协作的写作工具.Wiki站点可以有多人(甚至任何访问者)维 ...

  7. 淘宝后台添加颜色尺码动态sku

    废话不多说,直接上代码,用了vue,可直接copy运行 <!DOCTYPE html> <html lang="en"> <head> < ...

  8. 【Record】ART:Android RunTime

    资料来自url=9xdxrhR45Uj3p450JQvTUO-dmzcWswNmABVgYAaFS0AXYDi8Q2JOzvu7y33GIOAI_8Lz7JmLrl0x6DoRW8e5oa" ...

  9. 新IOS编程语言 Swift 新编译器Xcode6

    https://developer.apple.com/library/prerelease/ios/documentation/Swift/Conceptual/Swift_Programming_ ...

  10. PHP开发出来的万年历

    <?php /** * PHP万年历 */ class Calendar{ protected $_table;//table表格 protected $_currentDate;//当前日期 ...