bzoj3550: [ONTAK2010]Vacation(单纯形法+线性规划)
直接暴力把线性规划矩阵给打出来然后单纯形求解就行了
简单来说就是每个数记一个\(d_i\)表示选或不选,那么就是最大化\(\sum d_ic_i\),并满足一堆限制条件
然后不要忘记限制每个数最多选一次
(据说还可以费用流然而实在不会啊……)
//minamoto
#include<bits/stdc++.h>
#define R register
#define inf 1e18
#define fp(i,a,b) for(R int i=a,I=b+1;i<I;++i)
#define fd(i,a,b) for(R int i=a,I=b-1;i>I;--i)
#define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
using namespace std;
char buf[1<<21],*p1=buf,*p2=buf;
inline char getc(){return p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++;}
int read(){
R int res,f=1;R char ch;
while((ch=getc())>'9'||ch<'0')(ch=='-')&&(f=-1);
for(res=ch-'0';(ch=getc())>='0'&&ch<='9';res=res*10+ch-'0');
return res*f;
}
const int N=2005;const double eps=1e-8;
double a[N][N];int n,k,m;
void pivot(int l,int e){
double t=a[l][e];a[l][e]=1;fp(i,0,m)a[l][i]/=t;
fp(i,0,n)if(i!=l&&fabs(a[i][e])>eps){
t=a[i][e],a[i][e]=0;
fp(j,0,m)a[i][j]-=t*a[l][j];
}
}
void simplex(){
while(true){
int l=0,e=0;double mn=inf;
fp(i,1,m)if(a[0][i]>eps){e=i;break;}if(!e)break;
fp(i,1,n)if(a[i][e]>eps&&a[i][0]/a[i][e]<mn)mn=a[i][0]/a[i][e],l=i;
pivot(l,e);
}
}
int main(){
// freopen("testdata.in","r",stdin);
n=read(),k=read();fp(i,1,n*3)a[0][i]=read();
fp(i,1,n*3)a[i][i]=a[i][0]=1;
fp(i,1,n*2+1){
fp(j,0,n-1)a[i+n*3][i+j]=1;
a[i+n*3][0]=k;
}m=3*n,n=5*n+1;simplex();
printf("%d\n",(int)(-a[0][0]+0.5));return 0;
}
bzoj3550: [ONTAK2010]Vacation(单纯形法+线性规划)的更多相关文章
- BZOJ3550: [ONTAK2010]Vacation
3550: [ONTAK2010]Vacation Time Limit: 10 Sec Memory Limit: 96 MBSubmit: 91 Solved: 71[Submit][Stat ...
- bzoj3550: [ONTAK2010]Vacation&&bzoj3112: [Zjoi2013]防守战线
学了下单纯形法解线性规划 看起来好像并不是特别难,第二个code有注释.我还有...*=-....这个不是特别懂 第一个是正常的,第二个是解对偶问题的 #include<cstdio> # ...
- BZOJ3550 [ONTAK2010]Vacation 【单纯形】
题目链接 BZOJ3550 题解 单纯形裸题 题意不清,每个位置最多选一次 #include<algorithm> #include<iostream> #include< ...
- BZOJ 3550: [ONTAK2010]Vacation [单纯形法]
有3N个数,你需要选出一些数,首先保证任意长度为N的区间中选出的数的个数<=K个,其次要保证选出的数的个数最大. 好像都是费用流... 单纯性裸题呀... 注意每个数最多选1次 #include ...
- BZOJ_3550_[ONTAK2010]Vacation&&BZOJ_1283:_序列_网络流解线性规划
BZOJ_3550_[ONTAK2010]Vacation&&BZOJ_1283:_序列_网络流解线性规划 Description 给出一个长度为 的正整数序列Ci,求一个子序列,使得 ...
- 【BZOJ1283/3550】序列/[ONTAK2010]Vacation 最大费用流
[BZOJ1283]序列 Description 给出一个长度为 的正整数序列Ci,求一个子序列,使得原序列中任意长度为 的子串中被选出的元素不超过K(K,M<=100) 个,并且选出的元素之和 ...
- BZOJ 3550 ONTAK2010 Vacation 单纯形
题目大意:给定一个长度为3n的区间.要求选一些数,且随意一段长度为n的区间内最多选k个数.求选择数的和的最大值 单纯形直接搞 注意一个数仅仅能被选一次 因此要加上xi<=1这个约束条件 不明确3 ...
- 【Richard 的刷(水)题记录】
大概想了想,还是有个记录比较好. 9/24 网络流一日游: 最大流:bzoj1711[Usaco2007 Open]Dining 拆点 BZOJ 3993 Sdoi2015 星际战争 二分 P.S.这 ...
- 【BZOJ】【3550】【ONTAK2010】Vacation
网络流/费用流 Orz太神犇了这题…… 我一开始想成跟Intervals那题一样了……每个数a[i]相当于覆盖了(a[i]-n,a[i]+n)这个区间……但是这样是错的!!随便就找出反例了……我居然还 ...
随机推荐
- React学习及实例开发(一)——开始
本文基于React v16.4.1 初学react,有理解不对的地方,欢迎批评指正^_^ 一.构建一个新项目 1.命令行运行如下命令,构建一个新的react项目 npm install -g crea ...
- 继续畅通工程--hdu1879(最小生成树 模板题)
http://acm.hdu.edu.cn/showproblem.php?pid=1879 刚开始么看清题 以为就是n行 后来一看是n*(n-1)/2行 是输入错误 真是够够的 #incl ...
- 简单使用SOCKET,TCP,UDP模式之间的通信
TCP(Transmission Control Protocol 传输控制协议)是一种面向连接的.可靠的.基于字节流的传输层通信协议,由IETF的RFC 793定义.在简化的计算机网络OSI模型中, ...
- oracle dtrace for linux
https://docs.oracle.com/cd/E37670_01/E37355/html/ol_config_dtrace.html#
- 将oracle10g 升级至10.2.0.4
http://blog.csdn.net/launch_225/article/details/7221489 一.单实例环境,全时长一个半钟多. 详细图文说明到这下载 1.停止所有oracle相关进 ...
- webpack-Hot Module Replacement(热更新)
模块热替换(Hot Module Replacement) 模块热替换(HMR - Hot Module Replacement)功能会在应用程序运行过程中替换.添加或删除模块,而无需重新加载整个页面 ...
- SLF4J: Failed to load class的问题及解决
今天在做接口测试,一运行测试程序,就跳出这样一个大大的错误: SLF4J: Failed to load class “org.slf4j.impl.StaticLoggerBinder”. SLF4 ...
- PHP使用debug_backtrace方法跟踪代码调用
在开发过程中,例如要修改别人开发的代码或调试出问题的代码,需要对代码流程一步步去跟踪,找到出问题的地方进行修改.如果有一个方法可以获取到某段代码是被哪个方法调用,并能一直回溯到最开始调用的地方(包括调 ...
- OpenGL在MFC中的使用总结(一)——基本框架
项目中要画3D显示的模型,于是要用到OpenGL,加上是在MFC中,并且是在MFC中的ActiveX中使用.再并且鉴于他们程序主框架的设定.常规的方法还不一定能实现.所以还是查过不少资料,在此一一总结 ...
- Hackrank Kingdom Division 树形DP
题目链接:传送门 题意: 给你一棵树,n个点 每个点可以染成红色和蓝色 但是红色的点与其相邻的点中必须有红色节点,蓝色也是 问你有多少种染色的方案 题解: 树形dp 先转化为有根树,取1为根 设定dp ...