传送门

直接暴力把线性规划矩阵给打出来然后单纯形求解就行了

简单来说就是每个数记一个\(d_i\)表示选或不选,那么就是最大化\(\sum d_ic_i\),并满足一堆限制条件

然后不要忘记限制每个数最多选一次

(据说还可以费用流然而实在不会啊……)

//minamoto
#include<bits/stdc++.h>
#define R register
#define inf 1e18
#define fp(i,a,b) for(R int i=a,I=b+1;i<I;++i)
#define fd(i,a,b) for(R int i=a,I=b-1;i>I;--i)
#define go(u) for(int i=head[u],v=e[i].v;i;i=e[i].nx,v=e[i].v)
using namespace std;
char buf[1<<21],*p1=buf,*p2=buf;
inline char getc(){return p1==p2&&(p2=(p1=buf)+fread(buf,1,1<<21,stdin),p1==p2)?EOF:*p1++;}
int read(){
R int res,f=1;R char ch;
while((ch=getc())>'9'||ch<'0')(ch=='-')&&(f=-1);
for(res=ch-'0';(ch=getc())>='0'&&ch<='9';res=res*10+ch-'0');
return res*f;
}
const int N=2005;const double eps=1e-8;
double a[N][N];int n,k,m;
void pivot(int l,int e){
double t=a[l][e];a[l][e]=1;fp(i,0,m)a[l][i]/=t;
fp(i,0,n)if(i!=l&&fabs(a[i][e])>eps){
t=a[i][e],a[i][e]=0;
fp(j,0,m)a[i][j]-=t*a[l][j];
}
}
void simplex(){
while(true){
int l=0,e=0;double mn=inf;
fp(i,1,m)if(a[0][i]>eps){e=i;break;}if(!e)break;
fp(i,1,n)if(a[i][e]>eps&&a[i][0]/a[i][e]<mn)mn=a[i][0]/a[i][e],l=i;
pivot(l,e);
}
}
int main(){
// freopen("testdata.in","r",stdin);
n=read(),k=read();fp(i,1,n*3)a[0][i]=read();
fp(i,1,n*3)a[i][i]=a[i][0]=1;
fp(i,1,n*2+1){
fp(j,0,n-1)a[i+n*3][i+j]=1;
a[i+n*3][0]=k;
}m=3*n,n=5*n+1;simplex();
printf("%d\n",(int)(-a[0][0]+0.5));return 0;
}

bzoj3550: [ONTAK2010]Vacation(单纯形法+线性规划)的更多相关文章

  1. BZOJ3550: [ONTAK2010]Vacation

    3550: [ONTAK2010]Vacation Time Limit: 10 Sec  Memory Limit: 96 MBSubmit: 91  Solved: 71[Submit][Stat ...

  2. bzoj3550: [ONTAK2010]Vacation&&bzoj3112: [Zjoi2013]防守战线

    学了下单纯形法解线性规划 看起来好像并不是特别难,第二个code有注释.我还有...*=-....这个不是特别懂 第一个是正常的,第二个是解对偶问题的 #include<cstdio> # ...

  3. BZOJ3550 [ONTAK2010]Vacation 【单纯形】

    题目链接 BZOJ3550 题解 单纯形裸题 题意不清,每个位置最多选一次 #include<algorithm> #include<iostream> #include< ...

  4. BZOJ 3550: [ONTAK2010]Vacation [单纯形法]

    有3N个数,你需要选出一些数,首先保证任意长度为N的区间中选出的数的个数<=K个,其次要保证选出的数的个数最大. 好像都是费用流... 单纯性裸题呀... 注意每个数最多选1次 #include ...

  5. BZOJ_3550_[ONTAK2010]Vacation&&BZOJ_1283:_序列_网络流解线性规划

    BZOJ_3550_[ONTAK2010]Vacation&&BZOJ_1283:_序列_网络流解线性规划 Description 给出一个长度为 的正整数序列Ci,求一个子序列,使得 ...

  6. 【BZOJ1283/3550】序列/[ONTAK2010]Vacation 最大费用流

    [BZOJ1283]序列 Description 给出一个长度为 的正整数序列Ci,求一个子序列,使得原序列中任意长度为 的子串中被选出的元素不超过K(K,M<=100) 个,并且选出的元素之和 ...

  7. BZOJ 3550 ONTAK2010 Vacation 单纯形

    题目大意:给定一个长度为3n的区间.要求选一些数,且随意一段长度为n的区间内最多选k个数.求选择数的和的最大值 单纯形直接搞 注意一个数仅仅能被选一次 因此要加上xi<=1这个约束条件 不明确3 ...

  8. 【Richard 的刷(水)题记录】

    大概想了想,还是有个记录比较好. 9/24 网络流一日游: 最大流:bzoj1711[Usaco2007 Open]Dining 拆点 BZOJ 3993 Sdoi2015 星际战争 二分 P.S.这 ...

  9. 【BZOJ】【3550】【ONTAK2010】Vacation

    网络流/费用流 Orz太神犇了这题…… 我一开始想成跟Intervals那题一样了……每个数a[i]相当于覆盖了(a[i]-n,a[i]+n)这个区间……但是这样是错的!!随便就找出反例了……我居然还 ...

随机推荐

  1. 用Google Analytics UTM标注社会化媒体分享流量来源

    随着社会化媒体营销概念近两年的日益盛行,敢于吃螃蟹的营销工作者们展开了一些尝试,发现对社会化营销效果进行综合评估是一大难点,价值难以衡量.主要原因在于它的营销效果中混杂了直接的目标转化.品牌宣传.品牌 ...

  2. Java面试题,深入理解final关键字

    final关键字 final的简介 final可以修饰变量,方法和类,用于表示所修饰的内容一旦赋值之后就不会再被改变,比如String类就是一个final类型的类. final的具体使用场景 fina ...

  3. datasnap中间件如何控制长连接的客户端连接?

    ActiveConnections: TClientDataSet; ... 有客户端连接上来的时候 procedure TForm8.DSServer1Connect(DSConnectEventO ...

  4. CTEX - 在线文档 - TeX/LaTeX 常用宏包

    CTEX - 在线文档 - TeX/LaTeX 常用宏包       页面与章节标题式样   浮动对象及标题设计   生成与插入图形   表格与列表   目录与索引   参考文献   数学与化学公式 ...

  5. Eclipse中git插件导入远程库和上传项目源代码到远程库

    陆陆续续,从github,csdn的code.之前实习的小公司也是用git管理.发如今版本号控制方面确实比較方便.代码一敲完 . 自己由于完毕了新功能.加入一个新分支.然后提交上去,这就是程序猿一天干 ...

  6. 深入浅出AOP(一)

    动态代理实现AOP: AOP事实上非常早之前依照做出来了一些东西,之所以不敢说做出来了.是由于它是什么?怎么实现?做出来的东西是不是?先前一直查资料.查到的资料跟着做.到后来发现,AOP越来越大,而非 ...

  7. js中字符串的拼接的另一种方法

    // 按一定长度截断字符串,并使用 + 运算符进行连接. // 分隔字符串尽量按语义进行,如不要在一个完整的名词中间断开. // 特别的,对于HTML片段的拼接,通过缩进,保持和HTML相同的结构. ...

  8. bootstrap中固定table的表头

    前端时间鼓捣的一个简单的手机站点,今天又拿出来弄一弄 由于主要是给手机訪问.用的是bootstrap响应式布局,今天的任务是做一个数据展示页面 可是因为数据的列比較多.所以横向显示不下,为了较好的显示 ...

  9. java移位运算符实验程序:&lt;&lt;(左移)、&gt;&gt;(带符 号右移)和&gt;&gt;&gt;(无符号右移)

    public class txs { static void leftbit(){ int i;               //整型长度为32位                           ...

  10. devres in linux driver

    写 driver 时, probe 中常常要为设备分配一些资源, 如 内存 / irq / gpio / iomap 等. 而在 probe 中失败时又要小心的释放掉这些资源. 底层驱动开发人员可能会 ...