1.1.1最短路(Floyd、Dijstra、BellmanFord)
转载自hr_whisper大佬的博客
[
一、Dijkstra
比较详细的迪杰斯特拉算法讲解传送门
Dijkstra单源最短路算法,即计算从起点出发到每个点的最短路。所以Dijkstra常常作为其他算法的预处理。
使用邻接矩阵的时间复杂度为O(n^2),用优先队列的复杂度为O((m+n)logn)近似为O(mlogn)
(一) 过程
每次选择一个未访问过的到已经访问过(标记为Known)的所有点的集合的最短边,并用这个点进行更新,过程如下:
Dv为最短路,而Pv为前面的顶点。
初始
在v1被标记为已知后的表
下一步选取v4并且标记为known,顶点v3,v5,v6,v7是邻接的顶点,而他们实际上都需要调整。如表所示:
接下来选取v2,v4是邻接点,但已经是known的,不需要调整,v5是邻接的点但不做调整,因为经过v2的值为2+10=12而长为3的路径已经是已知的。
接下来选取v5,值为3,v7 3+6>5不需调整,然后选取v3,对v6的距离下调到3+5=8
再选下一个顶点是v7,v6变为5+1=6
最后选取v6
(二) 局限性
Dijkstra没办法解决负边权的最短路径,如图
运行完该算法后,从顶点1到顶点3的最短路径为1,3,其长度为1,而实际上最短路径为1,2,3,其长度为0.(因为过程中先选择v3,v3被标记为已知,今后不再更新)
(三) 算法实现。
1.普通的邻接表 以(HDU 1874 畅通工程续 SPFA || dijkstra)为例
用vis作为上面标记的known,dis记录最短距离(记得初始化为一个很大的数)。
(1)Dijkstra+邻接矩阵
#include<cstdio>
#include<cstring>
const int MAXN=200+10;
const int INF=1000000;
int n,m,map[MAXN][MAXN],dis[MAXN];
bool vis[MAXN];
void dijkstra(int s)
{
memset(vis,0,sizeof(vis));
int cur=s;
dis[cur]=0;
vis[cur]=1;
for(int i=0;i<n;i++)
{
for(int j=0;j<n;j++)
if(!vis[j] && dis[cur] + map[cur][j] < dis[j])
dis[j]=dis[cur] + map[cur][j] ;
int mini=INF;
for(int j=0;j<n;j++)
if(!vis[j] && dis[j] < mini)
mini=dis[cur=j];
vis[cur]=true;
}
}
int main()
{
while(~scanf("%d%d",&n,&m))
{
for(int i=0;i<n;i++)
{
dis[i]=INF;
for(int j=0;j<n;j++)
map[i][j]=INF;
}
for(int i=0;i<m;i++)
{
int from,to,val;
scanf("%d%d%d",&from,&to,&val);
if(map[from][to] > val)
map[to][from]=map[from][to]=val;
}
int s,t;
scanf("%d%d",&s,&t);
dijkstra(s);
if(dis[t]==INF)
printf("-1\n");
else
printf("%d\n",dis[t]);
}
return 0;
}
(2)Dijkstra+优先队列
#include<cstdio>
#include<cstring>
#include<queue>
using namespace std;
const int MAXN=200+10;
const int MAXM=40000+10;
const int INF=1000000;
int n,m,dis[MAXN],head[MAXN],len;
bool vis[MAXN];
struct edge
{
int to,val,next;
}e[MAXM];
void add(int from,int to,int val)
{
e[len].to=to;
e[len].val=val;
e[len].next=head[from];
head[from]=len++;
}
struct point
{
int val,id;
point(int id,int val):id(id),val(val){}
bool operator <(const point &x)const{
return val>x.val;
}
};
void dijkstra(int s)
{
memset(vis,0,sizeof(vis));
for(int i=0;i<n;i++)
dis[i]=INF;
priority_queue<point> q;
q.push(point(s,0));
dis[s]=0;
while(!q.empty())
{
int cur=q.top().id;
q.pop();
if(vis[cur]) continue;
vis[cur]=true;
for(int i=head[cur];i!=-1;i=e[i].next)
{
int id=e[i].to;
if(!vis[id] && dis[cur]+e[i].val < dis[id])
{
dis[id]=dis[cur]+e[i].val;
q.push(point(id,dis[id]));
}
}
}
}
int main()
{
while(~scanf("%d%d",&n,&m))
{
len=0;
memset(head,-1,sizeof(head));
for(int i=0;i<m;i++)
{
int from,to,val;
scanf("%d%d%d",&from,&to,&val);
add(from,to,val);
add(to,from,val);
}
int s,t;
scanf("%d%d",&s,&t);
dijkstra(s);
if(dis[t]==INF)
printf("-1\n");
else
printf("%d\n",dis[t]);
}
return 0;
}
二、SPFA(bellman-ford)
(一)原理过程
(二)实现
1.邻接矩阵的SPFA以(HDU 1874 畅通工程续 SPFA || dijkstra)为例:
#include<cstdio>
#include<queue>
using namespace std;
const int INF=1000000;
const int MAXN=200+10;
int n,m;
int map[MAXN][MAXN];
int dis[MAXN];
void SPFA(int s)
{
for(int i=0;i<n;i++)
dis[i]=INF;
bool vis[MAXN]={0};
vis[s]=true;
dis[s]=0;
queue<int> q;
q.push(s);
while(!q.empty())
{
int cur=q.front();
q.pop();
vis[cur]=false;
for(int i=0;i<n;i++)
{
if(dis[cur] + map[cur][i] < dis[i])
{
dis[i]=dis[cur] + map[cur][i];
if(!vis[i])
{
q.push(i);
vis[i]=true;
}
}
}
}
}
int main()
{
while(~scanf("%d%d",&n,&m))
{
for(int i=0;i<n;i++)
for(int j=0;j<n;j++)
map[i][j]=INF;
for(int i=0;i<m;i++)
{
int from,to,dis;
scanf("%d%d%d",&from,&to,&dis);
if(map[from][to]>dis)
map[from][to]=map[to][from]=dis;
}
int s,t;
scanf("%d%d",&s,&t);
SPFA(s);
if(dis[t]==INF)
puts("-1");
else
printf("%d\n",dis[t]);
}
return 0;
}
2.SPFA+邻接表
#include<cstdio>
#include<cstring>
#include<queue>
using namespace std;
const int MAXN=200+10;
const int MAXM=40000+10;
const int INF=1000000;
int n,m,dis[MAXN],head[MAXN],len;
bool vis[MAXN];
struct edge
{
int to,val,next;
}e[MAXM];
void add(int from,int to,int val)
{
e[len].to=to;
e[len].val=val;
e[len].next=head[from];
head[from]=len++;
}
void spfa(int s)
{
memset(vis,0,sizeof(vis));
for(int i=0;i<n;i++)
dis[i]=INF;
queue<int> q;
q.push(s);
vis[s]=true;
dis[s]=0;
while(!q.empty())
{
int cur=q.front();
q.pop();
vis[cur]=false;
for(int i=head[cur];i!=-1;i=e[i].next)
{
int id=e[i].to;
if(dis[id] > dis[cur]+e[i].val)
{
dis[id] = dis[cur] + e[i].val;
if(!vis[id])
{
vis[id]=true;
q.push(id);
}
}
}
}
}
int main()
{
while(~scanf("%d%d",&n,&m))
{
len=0;
memset(head,-1,sizeof(head));
for(int i=0;i<m;i++)
{
int from,to,val;
scanf("%d%d%d",&from,&to,&val);
add(from,to,val);
add(to,from,val);
}
int s,t;
scanf("%d%d",&s,&t);
spfa(s);
if(dis[t]==INF)
printf("-1\n");
else
printf("%d\n",dis[t]);
}
return 0;
}
三、Floyd
全称Floyd-Warshall。记得离散数学里面有Warshall算法,用来计算传递闭包。而数据结构每次都简称floyd,当时就觉得两个都差不多,有神马关系,后来google一下发现是同一个算法。。。。改个名字出来走江湖啊!!!!!
这个算法用于求所有点对的最短距离。比调用n次dijkstra的优点在于代码简单。
(一)原理过程
这是一个dp(动态规划的过程)
dis[i][j]=min(dis[i][j],dis[i][k]+dis[k][j]);
即从顶点i到j且经过顶点k的最短路径长度。
(二)实现
以(HDU 1874 畅通工程续 SPFA || dijkstra)为例
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
const int MAXN=200+10;
const int INF=1000000;
int n,m,dis[MAXN][MAXN];
void floyd()
{
for(int k=0;k<n;k++)
for(int i=0;i<n;i++)
for(int j=0;j<n;j++)
dis[i][j]=min(dis[i][j],dis[i][k]+dis[k][j]);
}
int main()
{
while(~scanf("%d%d",&n,&m))
{
for(int i=0;i<n;i++)
for(int j=0;j<n;j++)
dis[i][j]=INF;
for(int i=0;i<m;i++)
{
int from,to,val;
scanf("%d%d%d",&from,&to,&val);
if(dis[from][to] > val)
dis[to][from]=dis[from][to]=val;
}
int s,t;
scanf("%d%d",&s,&t);
if(s==t)
{
printf("0\n");
continue;
}
floyd();
if(dis[s][t]==INF)
printf("-1\n");
else
printf("%d\n",dis[s][t]);
}
return 0;
}
如走迷宫经常用的BFS,以一个点出发,向外扩散。
如:
UVA 10047 - TheMonocycle BFS
HDU 1728逃离迷宫 BFS
POJ3984迷宫问题 BFS
UVA 11624 - Fire!图BFS
除了上面的
HDU 1874畅通工程续 SPFA || dijkstra||floyd
还有:
UVA11280 - Flying to Fredericton SPFA变形
UVA11090 - Going in Cycle!! SPFA
UVA10917 Walk Through the Forest SPFA
POJ 3259Wormholes邻接表的SPFA判断负权回路
POJ 1932XYZZY (ZOJ 1935)SPFA+floyd
UVA11374 Airport Express SPFA||dijkstra
UVA11367 - Full Tank? dijkstra+DP
POJ 1511Invitation Cards (ZOJ 2008)使用优先队列的dijkstra
POJ 3268Silver Cow Party (Dijkstra~)
POJ 2387Til the Cows Come Home (Dijkstra)
UVA10603 - Fill BFS~
1.1.1最短路(Floyd、Dijstra、BellmanFord)的更多相关文章
- 最短路(floyd/dijkstra/bellmanford/spaf 模板)
floyd/dijkstra/bellmanford/spaf 模板: 1. floyd(不能处理负权环,时间复杂度为O(n^3), 空间复杂度为O(n^2)) floyd算法的本质是dp,用dp[k ...
- hdu-2544-最短路(Floyd算法模板)
题目链接 题意很清晰,入门级题目,适合各种模板,可用dijkstra, floyd, Bellman-ford, spfa Dijkstra链接 Floyd链接 Bellman-Ford链接 SPFA ...
- ACM/ICPC 之 最短路-Floyd+SPFA(BFS)+DP(ZOJ1232)
这是一道非常好的题目,融合了很多知识点. ZOJ1232-Adventrue of Super Mario 这一题折磨我挺长时间的,不过最后做出来非常开心啊,哇咔咔咔 题意就不累述了,注释有写,难点在 ...
- 模板C++ 03图论算法 2最短路之全源最短路(Floyd)
3.2最短路之全源最短路(Floyd) 这个算法用于求所有点对的最短距离.比调用n次SPFA的优点在于代码简单,时间复杂度为O(n^3).[无法计算含有负环的图] 依次扫描每一点(k),并以该点作为中 ...
- 最短路 - floyd算法
floyd算法是多源最短路算法 也就是说,floyd可以一次跑出所以点两两之间的最短路 floyd类似动态规划 如下图: 用橙色表示边权,蓝色表示最短路 求最短路的流程是这样的: 先把点1到其他点的最 ...
- HDU1869---(最短路+floyd)
http://acm.hdu.edu.cn/showproblem.php?pid=1869 思路:最短路+floyd 分析:1 题目是要求所有的数据能否满足“六度分离”,那么我们就想到所有点之间的最 ...
- 【bzoj2324】[ZJOI2011]营救皮卡丘 最短路-Floyd+有上下界费用流
原文地址:http://www.cnblogs.com/GXZlegend/p/6832504.html 题目描述 皮卡丘被火箭队用邪恶的计谋抢走了!这三个坏家伙还给小智留下了赤果果的挑衅!为了皮卡丘 ...
- 【ACM程序设计】求短路 Floyd算法
最短路 floyd算法 floyd是一个基于贪心思维和动态规划思维的计算所有点到所有点的最短距离的算法. P57-图-8.Floyd算法_哔哩哔哩_bilibili 对于每个顶点v,和任一顶点对(i, ...
- 几大最短路径算法比较(Floyd & Dijkstra & Bellman-Ford & SPFA)
几个最短路径算法的比较:Floyd 求多源.无负权边(此处错误?应该可以有负权边)的最短路.用矩阵记录图.时效性较差,时间复杂度O(V^3). Floyd-Warshall算法(Floyd ...
- (最短路径算法整理)dijkstra、floyd、bellman-ford、spfa算法模板的整理与介绍
这一篇博客以一些OJ上的题目为载体.整理一下最短路径算法.会陆续的更新... 一.多源最短路算法--floyd算法 floyd算法主要用于求随意两点间的最短路径.也成最短最短路径问题. 核心代码: / ...
随机推荐
- Codeforces Round #258 (Div. 2) B. Sort the Array(简单题)
题目链接:http://codeforces.com/contest/451/problem/B --------------------------------------------------- ...
- Shell 脚本小试牛刀(5) -- 超便捷脚本之高速ssh 登录其它主机
假设你也是以Linux 为工作环境的童鞋,那么此文真是捷报!由于我的学习/工作中(特别是近期玩耍树莓派)常常会使用到ssh 登录其它主机,而每次使用ssh 登录都须要输入老长一大串让我非常烦.所以我写 ...
- 最新---java多线程下载文件
import java.io.InputStream; import java.io.RandomAccessFile; import java.net.HttpURLConnection; impo ...
- hdoj 1203 I NEED A OFFER! 【另类01背包】【概率背包】
题意:... 策略:动态规划. 由于是求至少能得到一个offer的概率,那我们能够反着求.求得不到一个offer的概率.最后用1减去就好了. 代码: #include<string.h> ...
- Got error: 1449: The user specified as a definer ('root'@'%') does not exist when using LOCK TAB
在linux下,用mysql的导出语句: mysqldump -hlocalhost -uroot -pPasswd table >/home/ftp/test.sql 出现了 mysqldum ...
- Jenkins系列之-—01 简介&新建任务
一.Jenkins 简介 Jenkins是一个可扩展的持续集成引擎. 主要用于: l 持续.自动地构建/测试软件项目.l 监控一些定时执行的任务. Jenkins拥有的特性包括: l 易于安装-只要把 ...
- 【转载】COM文件与EXE文件的区别与联系
COM文件是一种可执行程序的内存映象文件,它与只有16位地址线的8位机上的CP/M操作系统下的可执行程序结构相似.在COM程序执行过程中,除了调用DOS功能和 ROM BIOS 功能,以及用户特意安排 ...
- Visual Studio 2012 Fakes框架测试驱动开发TDD教程
一.前言 最近团队要尝试TDD(测试驱动开发)的实践,很多人习惯了先代码后测试的流程,对于TDD总心存恐惧,认为没有代码的情况下写测试代码时被架空了,没法写下来,其实,根据个人实践经验,TDD并不可怕 ...
- 有关java构造器的笔记
当程序中首次出现使用一个类A时, 无论是使用A的静态成员还是创建一个对象(声明一个A类对象不算), 那么类加载器就会首先对A进行加载, 在对A进行加载的过程中, 如果A有一个extends的父类B, ...
- udhcp源码详解(二)--转
定义的数据结构对于C程序的重要性,不言而喻.面向对象设计的程序是一个个对象的集合,而面向过程语言设计的程序则是数据结构与算法的集合. 下面来分析的是dhcp server中的定义结构体: 1).在pa ...