1135 - Count the Multiples of 3
Time Limit: 3 second(s) | Memory Limit: 64 MB |
You have an array with n elements which is indexed from 0 to n - 1. Initially all elements are zero. Now you have to deal with two types of operations
- Increase the numbers between indices i and j (inclusive) by 1. This is represented by the command '0 i j'.
- Answer how many numbers between indices i and j (inclusive) are divisible by 3. This is represented by the command '1 i j'.
Input
Input starts with an integer T (≤ 5), denoting the number of test cases.
Each case starts with a line containing two integers n (1 ≤ n ≤ 105) and q (1 ≤ q ≤ 50000) denoting the number of queries. Each query will be either in the form '0 i j' or '1 i j' where i, j are integers and 0 ≤ i ≤ j < n.
Output
For each case, print the case number first. Then for each query in the form '1 i j', print the desired result.
Sample Input |
Output for Sample Input |
1 10 9 0 0 9 0 3 7 0 1 4 1 1 7 0 2 2 1 2 4 1 8 8 0 5 8 1 6 9 |
Case 1: 2 3 0 2 |
Note
Dataset is huge, use faster i/o methods.
1 #include<stdio.h>
2 #include<algorithm>
3 #include<iostream>
4 #include<string.h>
5 #include<stdlib.h>
6 #include<queue>
7 #include<math.h>
8 #include<vector>
9 using namespace std;
10 typedef struct node
11 {
12 int mod1;
13 int mod2;
14 int mod3;
15 int val;
16 node()
17 {
18 val = 0;
19 }
20 } tr;
21 tr tree[4*200005];
22 void build(int l,int r,int k);
23 void mov(int k);
24 void in(int l,int r,int k,int nn,int mm);
25 void up(int k);
26 int query(int l,int r,int k,int nn,int mm);
27 int main(void)
28 {
29 int i,j;
30 int T;
31 int __ca = 0;
32 scanf("%d",&T);
33 while(T--)
34 {
35 int n,m;
36 scanf("%d %d",&n,&m);
37 memset(tree,0,sizeof(tree));
38 build(0,n-1,0);
39 printf("Case %d:\n",++__ca);
40 while(m--)
41 {
42 int val ,x,y;
43 scanf("%d%d%d",&val,&x,&y);
44 if(val)
45 {
46 printf("%d\n",query(x,y,0,0,n-1));
47 }
48 else
49 {
50 in(x,y,0,0,n-1);
51 }
52 }
53 }
54 return 0;
55 }
56 void build(int l,int r,int k)
57 {
58 if(l==r)
59 {
60 tree[k].mod3 = 1;
61 tree[k].mod1 = 0;
62 tree[k].mod2 = 0;
63 tree[k].val = 0;
64 return ;
65 }
66 tree[k].val = 0;
67 build(l,(l+r)/2,2*k+1);
68 build((l+r)/2+1,r,2*k+2);
69 tree[k].mod1 = tree[2*k+1].mod1 + tree[2*k+2].mod1;
70 tree[k].mod2 = tree[2*k+1].mod2 + tree[2*k+2].mod2;
71 tree[k].mod3 = tree[2*k+1].mod3 + tree[2*k+2].mod3;
72 }
73 void mov(int k)
74 {
75 int x = tree[k].mod1;
76 tree[k].mod1 = tree[k].mod3;
77 tree[k].mod3 = tree[k].mod2;
78 tree[k].mod2 = x;
79 return ;
80 }
81 void in(int l,int r,int k,int nn,int mm)
82 {
83 if(l > mm||r < nn)
84 {
85 return ;
86 }
87 else if(l <= nn&& r>=mm)
88 {
89 tree[k].val++;
90 tree[k].val%=3;
91 int x = tree[k].val;
92 tree[k].val = 0;
93 if(x)
94 {
95 tree[2*k+1].val += x;
96 tree[2*k+2].val +=x;
97 tree[2*k+1].val%=3;
98 tree[2*k+2].val%=3;
99 while(x)
100 {
101 mov(k);
102 x--;
103 }
104 }
105 up(k);
106 }
107 else
108 {
109 int x= tree[k].val;
110 tree[2*k+1].val = (tree[2*k+1].val + x)%3;
111 tree[2*k+2].val = (tree[2*k+2].val + x)%3;
112 tree[k].val = 0;
113 in(l,r,2*k+1,nn,(nn+mm)/2);
114 in(l,r,2*k+2,(nn+mm)/2+1,mm);
115 }
116 }
117 void up(int k)
118 {
119 if(k == 0)
120 return ;
121 while(k)
122 {
123 k = (k-1)/2;
124 int xll = 2*k+1;
125 int xrr = 2*k+2;
126 if(tree[xll].val)
127 {
128 int x = tree[xll].val;
129 {
130 tree[xll].val = 0;
131 tree[2*xll+1].val = (tree[2*xll+1].val + x)%3;
132 tree[2*xll+2].val = (tree[2*xll+2].val + x)%3;
133 while(x)
134 {
135 mov(xll);
136 x--;
137 }
138 }
139 }
140 if(tree[xrr].val)
141 {
142 int x= tree[xrr].val;
143 tree[2*xrr+1].val = (tree[2*xrr+1].val+x)%3;
144 tree[2*xrr+2].val = (tree[2*xrr+2].val+x)%3;
145 tree[xrr].val = 0;
146 while(x)
147 {
148 mov(xrr);
149 x--;
150 }
151 }
152 tree[k].mod1 = tree[2*k+1].mod1+tree[2*k+2].mod1;
153 tree[k].mod2 = tree[2*k+1].mod2+tree[2*k+2].mod2;
154 tree[k].mod3 = tree[2*k+1].mod3+tree[2*k+2].mod3;
155 }
156 }
157 int query(int l,int r,int k,int nn,int mm)
158 {
159 if(l > mm||r < nn)
160 {
161 return 0;
162 }
163 else if(l <=nn&&r>=mm)
164 {
165 if(tree[k].val)
166 {
167 int x= tree[k].val;
168 tree[k].val = 0;
169 tree[2*k+1].val = (tree[2*k+1].val+x)%3;
170 tree[2*k+2].val = (tree[2*k+2].val+x)%3;
171 while(x)
172 {
173 mov(k);
174 x--;
175 }
176 }
177 up(k);
178 return tree[k].mod3;
179 }
180 else
181 {
182 if(tree[k].val)
183 {
184 int x = tree[k].val;
185 tree[k].val = 0;
186 tree[2*k+1].val = (tree[2*k+1].val+x)%3;
187 tree[2*k+2].val = (tree[2*k+2].val+x)%3;
188 }
189 int nx = query(l,r,2*k+1,nn,(nn+mm)/2);
190 int ny = query(l,r,2*k+2,(nn+mm)/2+1,mm);
191 return nx+ny;
192 }
193 }
1135 - Count the Multiples of 3的更多相关文章
- LightOJ 1135 - Count the Multiples of 3 线段树
http://www.lightoj.com/volume_showproblem.php?problem=1135 题意:给定两个操作,一个对区间所有元素加1,一个询问区间能被3整除的数有多少个. ...
- nodejs api 中文文档
文档首页 英文版文档 本作品采用知识共享署名-非商业性使用 3.0 未本地化版本许可协议进行许可. Node.js v0.10.18 手册 & 文档 索引 | 在单一页面中浏览 | JSON格 ...
- 【LeetCode】204 - Count Primes
Description:Count the number of prime numbers less than a non-negative number, n. Hint: Let's start ...
- Java [Leetcode 204]Count Primes
题目描述: Description: Count the number of prime numbers less than a non-negative number, n. 解题思路: Let's ...
- Codeforces Round #506 (Div. 3) D. Concatenated Multiples
D. Concatenated Multiples You are given an array aa, consisting of nn positive integers. Let's call ...
- POJ 1135 -- Domino Effect(单源最短路径)
POJ 1135 -- Domino Effect(单源最短路径) 题目描述: 你知道多米诺骨牌除了用来玩多米诺骨牌游戏外,还有其他用途吗?多米诺骨牌游戏:取一 些多米诺骨牌,竖着排成连续的一行,两 ...
- C#中Length和Count的区别(个人观点)
这篇文章将会很短...短到比你的JJ还短,当然开玩笑了.网上有说过Length和count的区别,都是很含糊的,我没有发现有 文章说得比较透彻的,所以,虽然这篇文章很短,我还是希望能留在首页,听听大家 ...
- [PHP源码阅读]count函数
在PHP编程中,在遍历数组的时候经常需要先计算数组的长度作为循环结束的判断条件,而在PHP里面对数组的操作是很频繁的,因此count也算是一个常用函数,下面研究一下count函数的具体实现. 我在gi ...
- EntityFramework.Extended 实现 update count+=1
在使用 EF 的时候,EntityFramework.Extended 的作用:使IQueryable<T>转换为update table set ...,这样使我们在修改实体对象的时候, ...
随机推荐
- 13.Merge k Sorted Lists
思路:利用map<int,vector<ListNode*> > 做值和指针的映射,最后将指针按值依次链接起来, 时间复杂度O(N),空间O(N) Merge k sorted ...
- Shell 打印空行的行号
目录 Shell 打印空行的行号 题解 Shell 打印空行的行号 写一个 bash脚本以输出一个文本文件 nowcoder.txt中空行的行号,可能连续,从1开始 示例: 假设 nowcoder.t ...
- 论 Erda 的安全之道
作者|陈建锋 来源|尔达 Erda 公众号 软件研发是一个复杂的工程,不仅需要进行软件的设计.开发.测试.运维,还涉及到大量的人力.物力管理.今天讨论的主角 - "安全",在软 ...
- Hive(四)【DML 数据导入导出】
目录 一.数据导入 1.1 [load]--向数据中装载数据 案例 1.2 [insert]--查询语句向表中插入数据 案例 1.3 [as select]--查询语句中创建表且加载数据 案例 1.4 ...
- JVM——垃圾收集算法及垃圾回收器
一.垃圾回收算法 1.标记-清除算法 1)工作流程 算法分为"标记"和"清除"阶段:首先标记出所有需要回收的对象(标记阶段),在标记完成后统一回收所有被标记的对 ...
- 【Linux】【Services】【Cache】使用Sentinel搭建高可用Redis
1. 简介 1.1. 一些基础概念请参考 http://www.cnblogs.com/demonzk/p/7453494.html 1.2. 几种常用的集群方式. -- Redis Sentinel ...
- linux系统的一些常用命令
cd 进入某个目录 ifconfig 查看本机的ip cp (要复制的文件的位置) (要把文件复制的位置) ll 查看文件下,文件的操作权限 ls查看该文件夹下的有那些文件和文件夹 vi filena ...
- Java Bean 与Spring Bean 的区别
什么是JavaBean: JavaBean是一种JAVA语言写的可重用组件.JavaBean符合一定规范写的Java类,是一种规范.它的方法命名,构造以及行为必须符合特定的要求: 1.所有属性 ...
- request获取请求参数通用方式
package com.hopetesting.web.request;import javax.servlet.ServletException;import javax.servlet.annot ...
- 南邮CTF-MISC-Remove Boyfriend
Remove Boyfriend 打开wireshark,找到关键字部分Remove Boyfriend 在第五行 在此行右击 点击追踪流 选择TCP流,可以分析出流量的传输过程 通过上面的执行列表 ...