Codeforces 1322D - Reality Show(DP)
首先这个消消乐的顺着消的过程看起来有点难受,DP 起来有点困难。考虑对其进行一个转化:将所有出场的人按照攻击力从小到大合并,然后每次将两个攻击力为 \(l\) 的合并为一个攻击力为 \(l+1\) 的人,答案加上 \(c_{l+1}\),如果发现攻击力为 \(l\) 的人 \(\le 1\) 那就继续合并攻击力为 \(l+1\) 的人,不难发现这个过程与原题的过程等价。
接下来考虑如何 DP 求解原问题。我们将序列翻转,这样单调不减就可以转化为单调不升,方便我们的合并过程。设 \(dp_{x,i,j}\) 表示当前考虑了前 \(x\) 个人,合并到攻击力 \(=i\) 的人,目前攻击力 \(=i\) 的人有 \(j\) 个,转移就新加入一个人时,令 \(dp_{x,l_x,j+1}\leftarrow dp_{x-1,l_x,j}-s_x+c_{l_x}\),然后从 \(l_x\) 开始往 \(n\) 枚举更新合并的贡献即可,具体来说 \(dp_{x,i+1,j/2}\leftarrow dp_{x,i,j}+\dfrac{j}{2}·c_{i+1}\)。你可能会疑惑为什么不直接一次性合并完所有攻击力为 \(i\) 的人直到不能合并为止,这是因为你有可能出现合并到一半又进来了新的人的情况,这种情况下就要一步步合并。\(x\) 那一维可以去掉这样空间复杂度可以达到平方。直接转移单次复杂度是 \(n^2\) 的,总复杂度 \(n^3\),无法通过。不过注意到在合并的过程中,我们的 \(j\) 只可能达到 \(\dfrac{x}{2^{i-l_x}}\),因此 \(j\) 的枚举只用枚举到 \(\dfrac{x}{2^{i-l_x}}\) 即可,这样总复杂度就是平方。
const int MAXN=2000;
int n,m,l[MAXN+5],s[MAXN+5],dp[MAXN*2+5][MAXN+5],c[MAXN*2+5];
int main(){
scanf("%d%d",&n,&m);
for(int i=1;i<=n;i++) scanf("%d",&l[i]);
for(int i=1;i<=n;i++) scanf("%d",&s[i]);
for(int i=1;i<=n+m;i++) scanf("%d",&c[i]);
memset(dp,192,sizeof(dp));
for(int i=1;i<=n+m;i++) dp[i][0]=0;
for(int i=n;i;i--){
for(int j=n;j;j--) chkmax(dp[l[i]][j],dp[l[i]][j-1]+c[l[i]]-s[i]);
for(int j=l[i];j<=n+m;j++) for(int k=0;k<=(n>>(j-l[i]));k++)
chkmax(dp[j+1][k>>1],dp[j][k]+1ll*(k>>1)*c[j+1]);
} printf("%d\n",dp[n+m][0]);
return 0;
}
Codeforces 1322D - Reality Show(DP)的更多相关文章
- Codeforces Gym101341K:Competitions(DP)
http://codeforces.com/gym/101341/problem/K 题意:给出n个区间,每个区间有一个l, r, w,代表区间左端点右端点和区间的权值,现在可以选取一些区间,要求选择 ...
- codeforces 711C Coloring Trees(DP)
题目链接:http://codeforces.com/problemset/problem/711/C O(n^4)的复杂度,以为会超时的 思路:dp[i][j][k]表示第i棵数用颜色k涂完后bea ...
- codeforces#1154F. Shovels Shop (dp)
题目链接: http://codeforces.com/contest/1154/problem/F 题意: 有$n$个物品,$m$条优惠 每个优惠的格式是,买$x_i$个物品,最便宜的$y_i$个物 ...
- Codeforces 1051 D.Bicolorings(DP)
Codeforces 1051 D.Bicolorings 题意:一个2×n的方格纸,用黑白给格子涂色,要求分出k个连通块,求方案数. 思路:用0,1表示黑白,则第i列可以涂00,01,10,11,( ...
- Codeforces 1207C Gas Pipeline (dp)
题目链接:http://codeforces.com/problemset/problem/1207/C 题目大意是给一条道路修管道,相隔一个单位的管道有两个柱子支撑,管道柱子高度可以是1可以是2,道 ...
- Codeforces 704C - Black Widow(dp)
Codeforces 题目传送门 & 洛谷题目传送门 u1s1 感觉这种题被评到 *2900 是因为细节太繁琐了,而不是题目本身的难度,所以我切掉这种题根本不能说明什么-- 首先题目中有一个非 ...
- Codeforces 682B New Skateboard(DP)
题目大概说给一个数字组成的字符串问有几个子串其代表的数字(可以有前导0)能被4整除. dp[i][m]表示字符串0...i中mod 4为m的后缀的个数 通过在i-1添加str[i]字符转移,或者以st ...
- Codeforces 543D Road Improvement(DP)
题目链接 Solution 比较明显的树形DP模型. 首先可以先用一次DFS求出以1为根时,sum[i](以i为子树的根时,满足要求的子树的个数). 考虑将根从i变换到它的儿子j时,sum[i]产生的 ...
- Codeforces 543C Remembering Strings(DP)
题意比较麻烦 见题目链接 Solution: 非常值得注意的一点是题目给出的范围只有20,而众所周知字母表里有26个字母.于是显然对一个字母进行变换后是不影响到其它字符串的. 20的范围恰好又是常见状 ...
随机推荐
- CentOS 压缩解压
目录 命令 tar gzip.gunzip bzip2.bunzip2 zip.unzip 命令组合 打包:将多个文件合成一个总的文件,这个总的文件通常称为"归档". 压缩:将一个 ...
- PyCharm永久破解方法,2021最新版本!!!
1,下载破解补丁(已更新到2021.1版本): 关注微信公众号<程序员的时光>,回复破解补丁即可: 下载补丁文件 jetbrains-agent.jar 和importat.txt文件并将 ...
- cunda 常用命令,删除,创建,换源
https://github.com/tensorflow/tensorflow/ conda create --name [虚拟环境名] python=3.7 创建一个环境 conda activa ...
- Java:基本概念小记
Java:基本概念 一些基本 Java 概念,做一个小小小小的记录 面向对象&面向过程 面向对象思想就是在计算机程序设计过程中,参照现实中事物,将事物的属性特征.行为特征抽象出来,描述成计算机 ...
- 北航OO第四单元总结
OO最后一次博客作业--好聚好散 一.单元总结 作业一: 第一次是对类图进行解析,没有太大难度,只要根据讨论区提供的建议,新建两个类来存储相关数据即可实现. 作业二: 第二次作业的难度只有量的提升,然 ...
- Prometheus基于Eureka的服务发现
Prometheus基于Eureka的服务发现 一.背景 二.实现步骤 1.eureka 客户端注册到prometheus中 2.prometheus中的写法 3.实现效果 三.完整代码 四.参考链接 ...
- 2021.9.17考试总结[NOIP模拟55]
有的考试表面上自称NOIP模拟,背地里却是绍兴一中NOI模拟 吓得我直接文件打错 T1 Skip 设状态$f_i$为最后一次选$i$在$i$时的最优解.有$f_i=max_{j<i}[f_j+a ...
- 热身训练3 Palindrome
Palindrome 简要题意: 我们有一个字符串S,字符串的长度不超过500000. 求满足S[i]=S[2n−i]=S[2n+i−2](1≤i≤n)(n≥2)的子串个数. 分析: 我们能通过简 ...
- 8M的摄像头,30fps摄像时,60hz的LCD刷新频率,请问camera每秒向BB传输多少数据,如何计算
8M的摄像头,30fps摄像时,60hz的LCD刷新频率,请问camera每秒向BB传输多少数据,如何计算 xiang2012 Post at 2012/8/7 10:37:33 8M的摄像头,30f ...
- 必备的60个常用的Linux命令
Linux必学的60个命令Linux提供了大量的命令,利用它可以有效地完成大量的工 作,如磁盘操作.文件存取.目录操作.进程管理.文件权限设定等.所以,在Linux系统上工作离不开使用系统提供的命令. ...