题目描述:

我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形。请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法?

解题思路:

①方法一

对于这种题没有思路怎么办?可以先从最简单的情况开始考虑:

显然,当n = 1时,只有一种方法

当n = 2时,如图有两种方法

当n = 3时,如图有三种方法

当我们做到这里总会出现错觉,是不是n等于几就是有几种方法呢?我们再接着来尝试:

当n = 4时,如图有五种方法。

做到这里基本上会确定就是斐波拉契数列了,可以接着验证,这里不做赘述

②方法二

可以先把2X4的覆盖方法记为f(4)【如上图n=4时的第一个图】,用1X2的小矩形去覆盖时,有两种选择:横着放或者竖着放。当竖着放时,右边还剩下2X3的区域。很明显这种情况下覆盖方法为f(3)。当横着放时,1X2的矩形放在左上角,其下方区域只能也横着放一个矩形,此时右边区域值剩下2X2的区域,这种情况下覆盖方法为f(2)。所以可以得到:f(4)=f(3)+f(2),不难看出这仍然是斐波那契数列。

特殊情况:f(1)=1,f(2)=2

代码实现

(C实现):

int rectCover(number)
{
// write code here
int fir = 1, sec = 2, res;
if (number <= 0 || number == 1 || number == 2) return number;
for (int i = 2; i <number; i++) {
res = fir + sec;
fir = sec;
sec = res;
}
//res = rectCover(number - 1) + rectCover(number - 2); 递归方式
return res;
}

(JavaScript实现):

function rectCover(number)
{
// write code here
var fir = 1, sec = 2, res;
if (number <= 0 || number == 1 || number == 2) {
return number;
}
for (var i = 2; i <number; i++) {
res = fir + sec;
fir = sec;
sec = res;
}
//res = rectCover(number - 1) + rectCover(number - 2); 递归方式
return res;
}

【剑指offer】10:矩形覆盖的更多相关文章

  1. 剑指Offer 10. 矩形覆盖 (递归)

    题目描述 我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形.请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法? 题目地址 https://www.nowcoder.com/ ...

  2. 剑指offer 10矩形覆盖

    我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形.请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法 java版本: public class Solution { publ ...

  3. [剑指Offer] 10.矩形覆盖

    题目描述 我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形.请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法? [思路]可归纳得出结论: f(n) = f(n-1) + f ...

  4. 剑指Offer:矩形覆盖【N1】

    剑指Offer:矩形覆盖[N1] 题目描述 我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形.请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法? 题目思考 我们先把2*8的 ...

  5. 剑指OFFER之矩形覆盖(九度OJ1390)

    题目描述: 我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形.请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法? 输入: 输入可能包含多个测试样例,对于每个测试案例, 输入 ...

  6. 【剑指offer】矩形覆盖

    一.题目: 我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形.请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法? 二.思路: 斐波那契数列 三.代码:     

  7. 剑指offer:矩形覆盖

    题目描述: 我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形.请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法? 解题思路: 和跳台阶那道题差不多.分别以矩形的两条边长做拓 ...

  8. 《剑指offer》矩形覆盖

    一.题目描述 我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形.请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法? 二.输入描述 输入n 三.输出描述 输出有多少种不同的覆 ...

  9. 【牛客网-剑指offer】矩形覆盖

    题目: 我们可以用21的小矩形横着或者竖着去覆盖更大的矩形.请问用n个21的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法? 分析: 假设2为高,n为宽 因为高为2固定,会出现固定情况,即无论 ...

  10. 剑指Offer之矩形覆盖

    题目描述 我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形.请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法? 比如n=3时,2*3的矩形块有3种覆盖方法: 思路:与裴波拉 ...

随机推荐

  1. 星空值、SPC、算力组成三元永动机制!VAST带你把握时代!

    目前中心化金融体系为用户提供的服务在便捷性和易用性方面已经达到了新高度,但随着时代发展,大众对于金融安全性和可控性的需求进一步提升,需要去中心化金融服务商来提供更具创意的解决方案.盛大公链为此在应用层 ...

  2. Excel和CSV格式文件的不同之处

    来源:https://blog.csdn.net/weixin_39198406/article/details/78705016 1.个人理解:为何选择使用csv来存储接口测试用例相关字段数据,而不 ...

  3. CSS实现页面切换时的滑动效果

    最近在开发手机端APP页面功能时遇到一个需求:某个页面查询的数据有三种分类,需要展示在同一页面上,用户通过点击分类标签来查看不同类型的数据, 期望效果是 用户点击标签切换时另一个页面能够以一个平滑切入 ...

  4. Docker搭建Hadoop环境

    文章目录 Docker搭建Hadoop环境 Docker的安装与使用 拉取镜像 克隆配置脚本 创建网桥 执行脚本 Docker命令补充 更换镜像源 安装vim 启动Hadoop 测试Word Coun ...

  5. git仓库创建及基本使用

    创建git用户 useradd git passwd git 创建目录 mkdir /home/git/repos/app.git/ -p 初始化目录 cd /home/git/repos/app.g ...

  6. HDOJ-1069(动态规划+排序+嵌套矩形问题)

    Monkey and Banana HDOJ-1069 这里实际是嵌套矩形问题的变式,也就是求不固定起点的最长路径 动态转移方程为:dp[i]=max(dp[j]+block[i].h|(i,j)∈m ...

  7. redhat安装python3.7

    下载并解压: 1 wget https://www.python.org/ftp/python/3.7.2/Python-3.7.2.tgz 2 tar -xzvf Python-3.7.2.tgz ...

  8. [省选联考 2020 A/B 卷] 冰火战士

    一.题目 点此看题 二.解法 其实这道题也不是特别难吧 \(......\) 但树状数组上二分是我第一次见. 我们把冰人和火人都按温度排序,那么考虑一个分界线 \(x\) ,问题就是求冰数组 \(x\ ...

  9. 【Azure 服务总线】详解Azure Service Bus SDK中接收消息时设置的maxConcurrentCalls,prefetchCount参数

    (Azure Service Bus服务总线的两大类消息处理方式: 队列Queue和主题Topic) 问题描述 使用Service Bus作为企业消息代理,当有大量的数据堆积再Queue或Topic中 ...

  10. x64 下记事本WriteFile() API钩取

    <逆向工程核心原理>第30章 记事本WriteFile() API钩取 原文是在x86下,而在x64下函数调用方式为fastcall,前4个参数保存在寄存器中.在原代码基础上进行修改: 1 ...