【剑指offer】10:矩形覆盖
题目描述:
我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形。请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法?
解题思路:
①方法一
对于这种题没有思路怎么办?可以先从最简单的情况开始考虑:

显然,当n = 1时,只有一种方法

当n = 2时,如图有两种方法

当n = 3时,如图有三种方法
当我们做到这里总会出现错觉,是不是n等于几就是有几种方法呢?我们再接着来尝试:

当n = 4时,如图有五种方法。
做到这里基本上会确定就是斐波拉契数列了,可以接着验证,这里不做赘述
②方法二
可以先把2X4的覆盖方法记为f(4)【如上图n=4时的第一个图】,用1X2的小矩形去覆盖时,有两种选择:横着放或者竖着放。当竖着放时,右边还剩下2X3的区域。很明显这种情况下覆盖方法为f(3)。当横着放时,1X2的矩形放在左上角,其下方区域只能也横着放一个矩形,此时右边区域值剩下2X2的区域,这种情况下覆盖方法为f(2)。所以可以得到:f(4)=f(3)+f(2),不难看出这仍然是斐波那契数列。
特殊情况:f(1)=1,f(2)=2
代码实现
(C实现):
int rectCover(number)
{
// write code here
int fir = 1, sec = 2, res;
if (number <= 0 || number == 1 || number == 2) return number;
for (int i = 2; i <number; i++) {
res = fir + sec;
fir = sec;
sec = res;
}
//res = rectCover(number - 1) + rectCover(number - 2); 递归方式
return res;
}
(JavaScript实现):
function rectCover(number)
{
// write code here
var fir = 1, sec = 2, res;
if (number <= 0 || number == 1 || number == 2) {
return number;
}
for (var i = 2; i <number; i++) {
res = fir + sec;
fir = sec;
sec = res;
}
//res = rectCover(number - 1) + rectCover(number - 2); 递归方式
return res;
}
【剑指offer】10:矩形覆盖的更多相关文章
- 剑指Offer 10. 矩形覆盖 (递归)
题目描述 我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形.请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法? 题目地址 https://www.nowcoder.com/ ...
- 剑指offer 10矩形覆盖
我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形.请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法 java版本: public class Solution { publ ...
- [剑指Offer] 10.矩形覆盖
题目描述 我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形.请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法? [思路]可归纳得出结论: f(n) = f(n-1) + f ...
- 剑指Offer:矩形覆盖【N1】
剑指Offer:矩形覆盖[N1] 题目描述 我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形.请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法? 题目思考 我们先把2*8的 ...
- 剑指OFFER之矩形覆盖(九度OJ1390)
题目描述: 我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形.请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法? 输入: 输入可能包含多个测试样例,对于每个测试案例, 输入 ...
- 【剑指offer】矩形覆盖
一.题目: 我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形.请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法? 二.思路: 斐波那契数列 三.代码:
- 剑指offer:矩形覆盖
题目描述: 我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形.请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法? 解题思路: 和跳台阶那道题差不多.分别以矩形的两条边长做拓 ...
- 《剑指offer》矩形覆盖
一.题目描述 我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形.请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法? 二.输入描述 输入n 三.输出描述 输出有多少种不同的覆 ...
- 【牛客网-剑指offer】矩形覆盖
题目: 我们可以用21的小矩形横着或者竖着去覆盖更大的矩形.请问用n个21的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法? 分析: 假设2为高,n为宽 因为高为2固定,会出现固定情况,即无论 ...
- 剑指Offer之矩形覆盖
题目描述 我们可以用2*1的小矩形横着或者竖着去覆盖更大的矩形.请问用n个2*1的小矩形无重叠地覆盖一个2*n的大矩形,总共有多少种方法? 比如n=3时,2*3的矩形块有3种覆盖方法: 思路:与裴波拉 ...
随机推荐
- USDN代币发行 关于USDN代币
"稳定币"是数字货币的一种,但与主流币存在的差异是,它可以通过锚定法币和加密资产等手段来维持币价的相对稳定.提及稳定币,一般会先介绍三种模式: 法币托管模式.数字资产抵押模式和无抵 ...
- 《容器高手实战: Dockerfile最佳实践》
Dockerfile最佳实践一个容器对应一个进程一个Docker容器应该只对应一个进程,也就是一个Docker 镜像一般只包含一个应用的制品包(比如.jar). 在需要组合多个进程的场景,使用容器组( ...
- Linux零拷贝技术
本文转载自Linux零拷贝技术 导语 本文讲解 Linux 的零拷贝技术,云计算是一门很庞大的技术学科,融合了很多技术,Linux 算是比较基础的技术,所以,学好 Linux 对于云计算的学习会有比较 ...
- linux系统导出随笔
导出时,不要用root用户忽略某张表的命令(多张表则直接往后加即可) --ignore-table=firewall_8088.operate_history --ignore-table=firew ...
- 永远不要眼高手低,Vue完整实现一套简单的增删改查CURD操作
1: 永远不要眼高手低,看起来很简单,但是你从来没有去动手试一下,就不知道其中真正需要注意的许多细节, 2:完整code如下: 1 <!DOCTYPE html> 2 <html l ...
- Python 学习笔记(2)
python 引号 Python 可以使用引号( ' ).双引号( " ).三引号( ''' 或 """ ) 来表示字符串,引号的开始与结束必须是相同类型的. ...
- Spring IoC - 循环依赖
Spring 复习 3.循环依赖 3.1 定义 循环依赖指多个对象的创建过程中均需要注入对方对象,如下所示 class A{ B b; public A(){ } public A(B b){ thi ...
- HDOJ-4027(线段树+区间更新(每个节点更新的值不同))
Can You answer these queries? HDOJ-4027 这道题目和前面做的题目略有不同.以前的题目区间更新的时候都是统一更新的,也就是更新相同的值.但是这里不一样,这里更新的每 ...
- 记一次Linux内核崩溃:kdump,crash,vmcore
原理 Linux内核发送崩溃时,kdump会生成一个内核转储文件vmcore. 可以通过分析vmcore分析出内核崩溃的原因. crash是一个被广泛应用的内核奔溃转储文件分析工具.使用crash调试 ...
- pygame模块使用时出现AttributeError: module ‘pygame’ has no attribute '…'错误解决方法
pygame模块使用时出现AttributeError: module 'pygame' has no attribute '-'错误解决方法 首先在pygame中存在init()模块,出现这样的问题 ...