洛谷 P2303 [SDOi2012]Longge的问题 解题报告
P2303 [SDOi2012]Longge的问题
题目背景
SDOi2012
题目描述
Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题。现在问题来了:给定一个整数\(N\),你需要求出\(\sum gcd(i, N)(1<=i <=N)\)。
输入输出格式
输入格式:
一个整数,为N。
输出格式:
一个整数,为所求的答案。
说明
对于60%的数据,0<N<=2^16
对于100%的数据,0<N<=2^32
问题很简短求\(\sum_{i=1}^n gcd(i,n)\)
先暴力枚举\(n\)的所有约数\(d\),讨论\(d\)可以产生的贡献
设\(m\)满足\(gcd(m,n)=d\),则有\(gcd(m/d,n/d)=1\)
则这样的\(m/d\)的个数为\(φ(n/d)\)。
所以\(d\)产生的贡献为\(d*φ(n/d)\)
则答案为\(\sum_{d|n} d*φ(n/d)\)
Code:
#include <cstdio>
#include <cmath>
#define ll long long
ll n,r,ans;
ll get(ll k)
{
ll eu=k;
for(ll i=2;i*i<=k;i++)
{
if(k%i==0)
eu=eu*(i-1)/i;
while(k%i==0)
k/=i;
}
if(k>1) eu=eu*(k-1)/k;
return eu;
}
int main()
{
scanf("%lld",&n);
r=sqrt(n);
for(int i=1;i<=r;i++)
if(n%i==0)
{
ans+=i*get(n/i);
ans+=n/i*get(i);
}
if(r*r==n)
ans-=r*get(n/r);
printf("%lld\n",ans);
return 0;
}
2018.6.29
洛谷 P2303 [SDOi2012]Longge的问题 解题报告的更多相关文章
- 洛谷P2303 [SDOi2012]Longge的问题
题目背景 SDOi2012 题目描述 Longge的数学成绩非常好,并且他非常乐于挑战高难度的数学问题.现在问题来了:给定一个整数N,你需要求出∑gcd(i, N)(1<=i <=N). ...
- 洛谷P2303 [SDOi2012] Longge的问题 数论
看懂了题解,太妙了TT但是想解释的话可能要很多数学公式打起来太麻烦了TT所以我就先只放代码具体推演的过程我先写在纸上然后拍下来做成图片放上来算辣quq 好的那我先滚去做题了做完这题就把题解放上来.因为 ...
- 洛谷 P2323 [HNOI2006]公路修建问题 解题报告
P2323 [HNOI2006]公路修建问题 题目描述 输入输出格式 输入格式: 在实际评测时,将只会有m-1行公路 输出格式: 思路: 二分答案 然后把每条能加的大边都加上,然后加小边 但在洛谷的题 ...
- 洛谷 P3299 [SDOI2013]保护出题人 解题报告
P3299 [SDOI2013]保护出题人 题目描述 出题人铭铭认为给SDOI2012出题太可怕了,因为总要被骂,于是他又给SDOI2013出题了. 参加SDOI2012的小朋友们释放出大量的僵尸,企 ...
- 洛谷 P1852 [国家集训队]跳跳棋 解题报告
P1852 [国家集训队]跳跳棋 题目描述 跳跳棋是在一条数轴上进行的.棋子只能摆在整点上.每个点不能摆超过一个棋子. 我们用跳跳棋来做一个简单的游戏:棋盘上有3颗棋子,分别在\(a\),\(b\), ...
- 洛谷 P2059 [JLOI2013]卡牌游戏 解题报告
P2059 [JLOI2013]卡牌游戏 题意 有\(n\)个人玩约瑟夫游戏,有\(m\)张卡,每张卡上有一个正整数,每次庄家有放回的抽一张卡,干掉从庄家起顺时针的第\(k\)个人(计算庄家),干掉的 ...
- 洛谷 P2463 [SDOI2008]Sandy的卡片 解题报告
P2463 [SDOI2008]Sandy的卡片 题意 给\(n(\le 1000)\)串,定义两个串相等为"长度相同,且一个串每个数加某个数与另一个串完全相同",求所有串的最长公 ...
- 洛谷 P2774 方格取数问题 解题报告
P2774 方格取数问题 题目背景 none! 题目描述 在一个有 \(m*n\) 个方格的棋盘中,每个方格中有一个正整数.现要从方格中取数,使任意 2 个数所在方格没有公共边,且取出的数的总和最大. ...
- 洛谷 画栅栏Painting the Fence 解题报告
P2205 画栅栏Painting the Fence 题目描述 \(Farmer\) \(John\) 想出了一个给牛棚旁的长围墙涂色的好方法.(为了简单起见,我们把围墙看做一维的数轴,每一个单位长 ...
随机推荐
- [Jxoi2012]奇怪的道路 BZOJ3195 状压DP
分析: k很小,可以状压. f[S][i]表示状态S表示在i之前k+1个中点的边数奇偶情况 之后转移的时候,S的最后一位不能为1 附上代码: #include <cstdio> #incl ...
- WPF save listbox config
UI <Grid x:Class="WzlyTool.ReplyContentUI" xmlns="http://schemas.microsoft.com/win ...
- 20155206赵飞 Exp1PC平台逆向破解及Bof基础实践
实验一 逆向及Bof基础 1.掌握NOP, JNE, JE, JMP, CMP汇编指令的机器码 NOP汇编指令的机器码是"90" JNE汇编指令的机器码是"75" ...
- 20155339 Exp8 Web基础
Exp8 Web基础 基础问题回答 (1)什么是表单 表单在网页中主要负责数据采集功能. 一个表单有三个基本组成部分: 表单标签,这里面包含了处理表单数据所用CGI程序的URL以及数据提交到服务器的方 ...
- 记录 第一次体验安装python第三方库的全过程
目的:安装 Pillow库 现状是:python是3.4,easy_install没有安装:pip没有安装, 步骤: 1.安装Pillow库需要安装pip 2.安装pip需要安装easy_instal ...
- SSRS配置2:加密管理
在初始化Reporting Service时,SSRS会自动创建数据库[ReportServer],用于存储报表元数据,报表订阅,以及凭证(Credential)和连接信息等身份验证信息,身份验证数据 ...
- SpringBoot日记——MQ消息队列整合(一)
除了之前讲到的缓存,我们还会用到消息队列来存储一些消息,为了提升系统的异步性能等等: 消息服务有两个概念需要知道:消息代理-message broker,目的地-destination.消息发送由代理 ...
- 【OpenCV学习笔记之一】图像加载,修改及保存
加载图像(用cv::imread)imread功能是加载图像文件成为一个Mat对象 其中第一个参数表示图像文件名称第二个参数 表示加载的图像是什么类型 支持常见的三个参数值IMREAD_UNCHANG ...
- 【Tableau】电商广告投放的地域分析
分析师的职责是利用处理数据获取信息,提炼规律,帮助企业正确决策业务方向. 所以,一个好的分析师绝不能被数据所困,既要深入业务,理解业务,也要高瞻远瞩,以领导者的思维借助数据分析的辅助做出判断. [结构 ...
- 高精度加法--C++
高精度加法--C++ 仿照竖式加法,在第一步计算的时候将进位保留,第一步计算完再处理进位.(见代码注释) 和乘法是类似的. #include <iostream> #include < ...