[kfk@bigdata-pro01 softwares]$ sudo rpm -ivh nc-1.84-.el6.x86_64.rpm
Preparing... ########################################### [%]
:nc ########################################### [%]
[kfk@bigdata-pro01 softwares]$

重新启用一个远程连接窗口

bin/run-example streaming.NetworkWordCount localhost  

回到这边输入一些信息

看到这边就有数据接收到了

我们退出,换个方式启动

我们在这边再输入一些数据

这边处理得非常快

因为打印的日志信息太多了,我修改一下配置文件(3个节点都修改吧,保守一点了)

我们在来跑一下

再回到这边我们敲几个字母进去

把同样的单词多次输入我们看看是什么结果

可以看到他会统计

我们启动一下spark-shell,发现报错了

是因为我们前面配置了hive到spark sql 里面,我们先配回来(3个节点都修改)

再启动一下

我们输入代码

scala> import org.apache.spark.streaming._
import org.apache.spark.streaming._ scala> import org.apache.spark.streaming.StreamingContext._
import org.apache.spark.streaming.StreamingContext._ scala> val ssc = new StreamingContext(sc, Seconds())
ssc: org.apache.spark.streaming.StreamingContext = org.apache.spark.streaming.StreamingContext@431f8830 scala> val lines = ssc.socketTextStream("localhost", )
lines: org.apache.spark.streaming.dstream.ReceiverInputDStream[String] = org.apache.spark.streaming.dstream.SocketInputDStream@23f27434 scala> val words = lines.flatMap(_.split(" "))
words: org.apache.spark.streaming.dstream.DStream[String] = org.apache.spark.streaming.dstream.FlatMappedDStream@2c3df478 scala> val pairs = words.map(word => (word, ))
pairs: org.apache.spark.streaming.dstream.DStream[(String, Int)] = org.apache.spark.streaming.dstream.MappedDStream@6d3dc0c5 scala> val wordCounts = pairs.reduceByKey(_ + _)
wordCounts: org.apache.spark.streaming.dstream.DStream[(String, Int)] = org.apache.spark.streaming.dstream.ShuffledDStream@8fa4647 scala> wordCounts.print() scala>

最后启动一下服务发现报错了

是因为没有启动nc

现在把他启动

我们敲进去一些数据

退出再启动一次

再次把代码放进来

我们在nc那边输入数据

回到这边看看结果

打开我们的idea

package com.spark.test

import org.apache.spark.sql.SparkSession
import org.apache.spark.streaming._
import org.apache.spark.streaming.StreamingContext._
import org.apache.spark.{SparkConf, SparkContext}
object Test { def main(args: Array[String]): Unit = {
val spark= SparkSession
.builder
.master("local[2]")
.appName("HdfsTest")
.getOrCreate() val ssc = new StreamingContext(spark.sparkContext, Seconds());
val lines = ssc.socketTextStream("localhost", )
val words = lines.flatMap(_.split(" "))
}
}

package com.spark.test

import org.apache.spark.sql.SparkSession
import org.apache.spark.storage.StorageLevel
import org.apache.spark.streaming.{Seconds, StreamingContext} object TestStreaming {
def main(args: Array[String]): Unit = {
val spark= SparkSession.builder.master("local[2]")
.appName("streaming").getOrCreate() val sc=spark.sparkContext;
val ssc = new StreamingContext(sc, Seconds())
val lines = ssc.socketTextStream("bigdata-pro01.kfk.com", )
//flatMap运算
val words = lines.flatMap(_.split(" ")).map(words=>(words,)).reduceByKey(_+_)
words.print()
//map reduce 计算
// val wordCounts = words.map(x =>(x, 1)).reduceByKey(_ + _)
// wordCounts.print()
ssc.start()
ssc.awaitTermination() }
}

这个过程呢要这样操作,先把程序运行,再启动nc,再到nc界面输入单词

package com.spark.test

import java.sql.DriverManager

import org.apache.spark.sql.SparkSession
import org.apache.spark.storage.StorageLevel
import org.apache.spark.streaming.{Seconds, StreamingContext} object TestStreaming {
def main(args: Array[String]): Unit = {
val spark= SparkSession.builder.master("local[2]")
.appName("streaming").getOrCreate() val sc=spark.sparkContext;
val ssc = new StreamingContext(sc, Seconds())
val lines = ssc.socketTextStream("bigdata-pro01.kfk.com", )
//flatMap运算
val words = lines.flatMap(_.split(" ")).map(words=>(words,)).reduceByKey(_+_) words.foreachRDD(rdd=>rdd.foreachPartition(line=>{
Class.forName("com.mysql.jdbc.Driver")
val conn= DriverManager.
getConnection("jdbc:mysql://bigdata-pro01.kfk.com:3306/test","root","root")
try {
for(row <-line ) {
val sql = "insert into webCount(titleName,count)values('" +row._1+ "',"+row._2+")"
conn.prepareStatement(sql).executeUpdate()
}
}finally {
conn.close()
} })) words.print()
//map reduce 计算
// val wordCounts = words.map(x =>(x, 1)).reduceByKey(_ + _)
// wordCounts.print()
ssc.start()
ssc.awaitTermination() }
}

我们把代码拷进来

import java.sql.DriverManager
import org.apache.spark.sql.SparkSession
import org.apache.spark.streaming.{Seconds, StreamingContext} val sc=spark.sparkContext;
val ssc = new StreamingContext(sc, Seconds())
val lines = ssc.socketTextStream("bigdata-pro01.kfk.com", )
val words = lines.flatMap(_.split(" ")).map(words=>(words,)).reduceByKey(_+_)
words.foreachRDD(rdd=>rdd.foreachPartition(line=>{
Class.forName("com.mysql.jdbc.Driver")
val conn= DriverManager.
getConnection("jdbc:mysql://bigdata-pro01.kfk.com:3306/test","root","root")
try {
for(row <-line ) {
val sql = "insert into webCount(titleName,count)values('" +row._1+ "',"+row._2+")"
conn.prepareStatement(sql).executeUpdate()
}
}finally {
conn.close()
}
}))
ssc.start()
ssc.awaitTermination()

我们输入数据

我们通过mysql查看一下表里面的数据

Spark Streaming实时数据分析的更多相关文章

  1. 新闻实时分析系统 Spark Streaming实时数据分析

    1.Spark Streaming功能介绍1)定义Spark Streaming is an extension of the core Spark API that enables scalable ...

  2. 新闻网大数据实时分析可视化系统项目——19、Spark Streaming实时数据分析

    1.Spark Streaming功能介绍 1)定义 Spark Streaming is an extension of the core Spark API that enables scalab ...

  3. Spark Streaming实时计算框架介绍

    随着大数据的发展,人们对大数据的处理要求也越来越高,原有的批处理框架MapReduce适合离线计算,却无法满足实时性要求较高的业务,如实时推荐.用户行为分析等. Spark Streaming是建立在 ...

  4. 【Streaming】30分钟概览Spark Streaming 实时计算

    本文主要介绍四个问题: 什么是Spark Streaming实时计算? Spark实时计算原理流程是什么? Spark 2.X下一代实时计算框架Structured Streaming Spark S ...

  5. 【转】Spark Streaming 实时计算在甜橙金融监控系统中的应用及优化

    系统架构介绍 整个实时监控系统的架构是先由 Flume 收集服务器产生的日志 Log 和前端埋点数据, 然后实时把这些信息发送到 Kafka 分布式发布订阅消息系统,接着由 Spark Streami ...

  6. Spark练习之通过Spark Streaming实时计算wordcount程序

    Spark练习之通过Spark Streaming实时计算wordcount程序 Java版本 Scala版本 pom.xml Java版本 import org.apache.spark.Spark ...

  7. 大数据Spark+Kafka实时数据分析案例

    本案例利用Spark+Kafka实时分析男女生每秒购物人数,利用Spark Streaming实时处理用户购物日志,然后利用websocket将数据实时推送给浏览器,最后浏览器将接收到的数据实时展现, ...

  8. 【慕课网实战】Spark Streaming实时流处理项目实战笔记十六之铭文升级版

    铭文一级: linux crontab 网站:http://tool.lu/crontab 每一分钟执行一次的crontab表达式: */1 * * * * crontab -e */1 * * * ...

  9. 【慕课网实战】Spark Streaming实时流处理项目实战笔记十五之铭文升级版

    铭文一级:[木有笔记] 铭文二级: 第12章 Spark Streaming项目实战 行为日志分析: 1.访问量的统计 2.网站黏性 3.推荐 Python实时产生数据 访问URL->IP信息- ...

随机推荐

  1. react-hot-loader 3.0于1.3的区别

    现在react-hot-loader 3.0版本应该还是beta版本,不过没关系,还是可以正常使用,我在项目中用的是react-hot-loader 3.0.0-beta.7 版本,并没用发现任何问题 ...

  2. k8s 的使用

    Kubernetes 是什么:在 Docker 技术的基础上,为容器化的应用提供部署运行.资源调度.服务发现和动态伸缩等一系列完整功能,提高了大规模容器集群管理的便捷性的工具.

  3. Centos6 rpm 安装mysql5.5(转)

    版权声明:本文为博主原创文章,未经博主允许不得转载. https://blog.csdn.net/macfac/article/details/51868712 0. 到官网下载好,想要安装的rpm包 ...

  4. MyBatis Generator 生成的example 如何使用 and or 简单混合查询

    简单介绍: Criteria,包含一个Cretiron的集合,每一个Criteria对象内包含的Cretiron之间是由AND连接的,是逻辑与的关系. oredCriteria,Example内有一个 ...

  5. c#根据手机号查归属地

    可调用接口参考地址(没有免费的午餐): https://www.juhe.cn/docs/api/id/11 http://vip.showji.com/locating/?m=13606401549 ...

  6. 阅读OReilly.Web.Scraping.with.Python.2015.6笔记---Crawl

    阅读OReilly.Web.Scraping.with.Python.2015.6笔记---Crawl 1.函数调用它自身,这样就形成了一个循环,一环套一环: from urllib.request ...

  7. SDI core端口说明

    SDI core端口说明 本文基于赛灵思的官方文档以及自己的理解: 1.生成SDI core 2.得到SDI core的顶层文件,并对每个端口做出解释 smpte_sdi smpte_sdi ( .r ...

  8. Reporting Services报表常用的URL参数

    http://blog.sina.com.cn/s/blog_5ef7acf5010118a5.html Reporting Services报表常用的URL参数 (2012-03-01 20:57: ...

  9. influxDB 0.9 C# 读写类

    influxDB 0.9 C# 读写类   目前influxdb官网推荐的C#读写类是针对0.8版本的,截至本文写作之前,尚未发现有针对0.9的读写类. 我使用influxdb的是用于保存服务器的运行 ...

  10. wxPython 入门开发示例

    1.背景资料 wxPython API:https://www.wxpython.org/Phoenix/docs/html/ 2.入门示例 wxPython最重要的两个概念:App与Frame,其中 ...