机器学习入门-数值特征-对数据进行log变化
对于一些标签和特征来说,分布不一定符合正态分布,而在实际的运算过程中则需要数据能够符合正态分布
因此我们需要对特征进行log变化,使得数据在一定程度上可以符合正态分布
进行log变化,就是对数据使用np.log(data+1) 加上1的目的是为了防止数据等于0,而不能进行log变化
代码:
第一步:导入数据
第二步:对收入特征做直方图,同时标出中位数所在的位置,即均值
第三步:对收入特征做log变化,使用np.log(data+1)
第四步:对log收入特征做直方图,标出中位数线的位置,即均值
结论:我们可以发现变化后的特征在一定程度上更加接近正态分布
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt # 第一步导入数据
ffc_survey_df = pd.read_csv('datasets/fcc_2016_coder_survey_subset.csv', encoding='utf-8') # 第二步对数据的收入做直方图
fig, ax = plt.subplots()
ffc_survey_df['Income'].hist(color='#A9C5D3', bins=30)
plt.axvline(ffc_survey_df['Income'].quantile(), color='r', label='Binary line')
plt.legend(fontsize=18, loc='best')
ax.set_xlabel('Income', fontsize=12)
ax.set_ylabel('Frequency', fontsize=12)
ax.set_title('Income_hist', fontsize=12)
plt.show()

# 第三步:对收入的数据进行log变化
ffc_survey_df['log_income'] = np.log(ffc_survey_df['Income'].values+1)
print(ffc_survey_df[['Income', 'log_income']].head())

log前后的数据
# 第四步:对log变化后的数据画出直方图
fig, ax = plt.subplots()
ffc_survey_df['log_income'].hist(color='#A9C5D3', bins=30)
plt.axvline(ffc_survey_df['log_income'].quantile(), color='r', label='Binary line')
plt.legend(fontsize=18, loc='best')
ax.set_xlabel('log_Income', fontsize=12)
ax.set_ylabel('Frequency', fontsize=12)
ax.set_title('Income_hist', fontsize=12)
plt.show()

机器学习入门-数值特征-对数据进行log变化的更多相关文章
- 机器学习入门-数值特征-进行二值化变化 1.Binarizer(进行数据的二值化操作)
函数说明: 1. Binarizer(threshold=0.9) 将数据进行二值化,threshold表示大于0.9的数据为1,小于0.9的数据为0 对于一些数值型的特征:存在0还有其他的一些数 二 ...
- 机器学习入门-数值特征-连续数据离散化(进行分段标记处理) 1.hist(Dataframe格式直接画直方图)
函数说明: 1. .hist 对于Dataframe格式的数据,我们可以使用.hist直接画出直方图 对于一些像年龄和工资一样的连续数据,我们可以对其进行分段标记处理,使得这些连续的数据变成离散化 就 ...
- 机器学习入门-数值特征-进行多项式变化(将特征投影到高维度上) 1.PolynomialFeatures(将数据变化为多项式特征)
函数说明: 1. PolynomialFeatures(degree=2, interaction_only=False, include_bias=False) 参数说明:degree=2,表示多项 ...
- 机器学习入门-数值特征-数据四分位特征 1.quantile(用于求给定分数位的数值) 2.plt.axvline(用于画出竖线) 3.pd.pcut(对特征进行分位数切分,生成新的特征)
函数说明: 1. .quantile(cut_list) 对DataFrame类型直接使用,用于求出给定列表中分数的数值,这里用来求出4分位出的数值 2. plt.axvline() # 用于画 ...
- 机器学习入门-数值特征-数字映射和one-hot编码 1.LabelEncoder(进行数据自编码) 2.map(进行字典的数字编码映射) 3.OnehotEncoder(进行one-hot编码) 4.pd.get_dummies(直接对特征进行one-hot编码)
1.LabelEncoder() # 用于构建数字编码 2 .map(dict_map) 根据dict_map字典进行数字编码的映射 3.OnehotEncoder() # 进行one-hot编码 ...
- 机器学习入门09 - 特征组合 (Feature Crosses)
原文链接:https://developers.google.com/machine-learning/crash-course/feature-crosses/ 特征组合是指两个或多个特征相乘形成的 ...
- 机器学习入门-文本特征-word2vec词向量模型 1.word2vec(进行word2vec映射编码)2.model.wv['sky']输出这个词的向量映射 3.model.wv.index2vec(输出经过映射的词名称)
函数说明: 1. from gensim.model import word2vec 构建模型 word2vec(corpus_token, size=feature_size, min_count ...
- 机器学习入门-文本特征-使用LDA主题模型构造标签 1.LatentDirichletAllocation(LDA用于构建主题模型) 2.LDA.components(输出各个词向量的权重值)
函数说明 1.LDA(n_topics, max_iters, random_state) 用于构建LDA主题模型,将文本分成不同的主题 参数说明:n_topics 表示分为多少个主题, max_i ...
- 机器学习入门 - Google机器学习速成课程 - 笔记汇总
机器学习入门 - Google机器学习速成课程 https://www.cnblogs.com/anliven/p/6107783.html MLCC简介 前提条件和准备工作 完成课程的下一步 机器学 ...
随机推荐
- P1916小书童--大战蚂蚁
链接 题解:(这里蚂蚁0血也算活...) #include<iostream>#include<cstdio>#include<cmath>using namesp ...
- appium 元素文件 -查找元素 封装思路和方法
方法1. try: target="//android.widget.TextView[@text='立即體驗']" element = WebDriverWait(dr,5,0. ...
- Mina2 udp--zhengli
一.包与类名. 1.所有类和方法严格使用驼峰法命名.例:SSLFilter 更名为 SslFilter.NIO传输类在命名时增加 Nio 前缀.因为NIO 并不是 socket/datagram 传输 ...
- grafana 指标视图嵌入到其他html网页
我们开发了一套管理平台用来监控整个系统环境的运行情况,但是在指标信息这块不想重新开发,而想直接拿grafana来用,刚开始的时候我们的管理平台和grafana是完全独立的,只能从我们平台跳转到graf ...
- redis-5.0.3集群搭建
首先部署redis-5.0.3,请参考我的另一篇文章 https://www.cnblogs.com/djlsunshine/p/10592174.html 启动redis服务 # redis-ser ...
- IGMP Internet组管理协议 未完
一.IGMP Internet组管理协议 2.IGMP v2 3.IGMP三版本比较 4.1.1.4 IGMP v2 与 IGMP v1 的兼容 5.IGMP窃听(IGMP Snooping) IGM ...
- [UE4]世界坐标、本地坐标
本地坐标 世界坐标
- [UE4]哪些数据可以保存
基本类型的数据都可以保存(整型,浮点型等等)和容器类型(数组.结构体.Maps(字典表)). 复杂数据类型可以使用结构体把要保存的数据提出出来,通过保存结构体,达到保存复杂数据类型的目的.
- sklearn不同数量的训练集在测试集上的表现的曲线刻画
def plot_learning_curve(estimator,X,y,cv=5,train_sizes=[0.1,0.3,0.5,0.7,0.8,0.9]): """ ...
- adb显示 部分乱码修改方法
用windows自带的命令行[cmd]软件链接adb 设备后,部分显示乱码,如下图片所示: 图1 修改方法如下: alias ls='busybox ls --color=never' 修改后显示正常 ...