Caffe的solver参数介绍
1. Parameters
solver.prototxt文件是用来告诉caffe如何训练网络的。solver.prototxt的各个参数的解释如下:
- base_lr
这个参数是用来表示网络的初始学习率的。这个值是一个浮点型实数。 - lr_policy
这个参数是用来表示学习率随着时间是如何变化的。值是字符串,需要加""。学习率变化的可选参数有:
“step”——需要设置stepsize。根据gamma参数和stepsize参数来降低学习率,base_lr * gamma ^ (floor(iter / stepsize))。iter是当前迭代次数。学习率每迭代stepsize次变化一次。
“multistep”——与step类似,需要设置stepvalue,学习率根据stepvalue进行变化。
“fixed”——学习率base_lr保持不变。
“inv”——学习率变化公式为base_lr * (1 + gamma * iter) ^ (- power)
“exp”——学习率变化公式为base_lr * gamma ^ iter}
“poly”——学习率以多项式形式衰减,到最大迭代次数时降为0。学习率变化公式为base_lr * (1 - iter/max_iter) ^ (power)。
“sigmoid”——学习率以S型曲线形式衰减,学习率变化公式为base_lr * (1 / (1 + exp(-gamma * (iter - stepsize))))。 - gamma
这个参数表示学习率每次的变化程度,值为实数。 - stepsize
这个参数表示什么时候应该进行训练的下一过程,值为正整数。主要用在lr_policy为step的情况。 - stepvalue
这个参数表示什么时候应该进行训练的下一过程,值为正整数。主要用在lr_policy为multistep的情况。 - max_iter
这个参数表示训练神经网络迭代的最大次数,值为正整数。 - momentum
这个参数表示在新的计算中要保留的前面的权重数量,值为真分数,通常设为0.9。 - weight_decay
这个参数表示对较大权重的惩罚(正则化)因子。值为真分数。
This parameter indicates the factor of (regularization) penalization of large weights. This value is a often a real fraction. - solver_mode
这个参数用来表示求解神经网络的模式——值为CPU or GPU。 - snapshot
这个参数用来表示每迭代多少次就应该保存snapshot的model和solverstate,值为正整数。 - snapshot_prefix:
这个参数用来表示保存snapshot时model和solverstate的前缀,值为带引号的字符串。 - net:
这个参数表示训练网络所在的位置,值为带引号的字符串。 - test_iter
这个参数表示
这个参数表示每个test_interval进行多少次test迭代,值为正整数。 - test_interval
这个参数表示什么时候进行数据的测试,值为正整数。 - display
这个参数用来表示什么时候将输出结果打印到屏幕上,值为正整数,表示迭代次数。 - type
这个参数表示训练神经网络采用的反向传播算法,值为带引号的字符串。可选的值有:
Stochastic Gradient Descent “SGD”——随机梯度下降,默认值。
AdaDelta “AdaDelta”——一种”鲁棒的学习率方法“,是基于梯度的优化方法。
Adaptive Gradient “AdaGrad”——自适应梯度方法。
Adam “Adam”——一种基于梯度的优化方法。
Nesterov’s Accelerated Gradient “Nesterov”——Nesterov的加速梯度法,作为凸优化中最理想的方法,其收敛速度非常快。
RMSprop “RMSProp”——一种基于梯度的优化方法。
2. Demo
- lr_policy
# lr_policy为multisetp
base_lr: 0.01
momentum: 0.9
lr_policy: "multistep"
gamma: 0.9
stepvalue: 1000
stepvalue: 2000
stepvalue: 3000
stepvalue: 4000
stepvalue: 5000
# lr_policy为step
base_lr: 0.01
momentum: 0.9
lr_policy: "step"
gamma: 0.9
stepsize: 1000
- solver.prototxt
net: "models/bvlc_alexnet/train_val.prototxt"
# 每次测试时进行1000次迭代
test_iter: 1000
# 每进行1000次训练执行一次测试
test_interval: 1000
base_lr: 0.01
lr_policy: "step"
gamma: 0.1
stepsize: 100000
display: 20
max_iter: 450000
momentum: 0.9
weight_decay: 0.0005
snapshot: 10000
snapshot_prefix: "models/bvlc_alexnet/caffe_alexnet_train"
solver_mode: GPU
参考资料
Caffe的solver参数介绍的更多相关文章
- Caffe的Solver参数设置
Caffe的solver参数设置 http://caffe.berkeleyvision.org/tutorial/solver.html solver是通过协调前向-反向传播的参数更新来控制参数优化 ...
- Caffe常用层参数介绍
版权声明:本文为博主原创文章,转载请注明出处. https://blog.csdn.net/Cheese_pop/article/details/52024980 DATA crop:截取原图像中一个 ...
- caffe之solver.prototxt文件参数设置
caffe solver参数意义与设置 batchsize:每迭代一次,网络训练图片的数量,例如:如果你的batchsize=256,则你的网络每迭代一次,训练256张图片:则,如果你的总图片张数为1 ...
- [转]caffe中solver.prototxt参数说明
https://www.cnblogs.com/denny402/p/5074049.html solver算是caffe的核心的核心,它协调着整个模型的运作.caffe程序运行必带的一个参数就是so ...
- caffe(7) solver及其配置
solver算是caffe的核心的核心,它协调着整个模型的运作.caffe程序运行必带的一个参数就是solver配置文件.运行代码一般为 # caffe train --solver=*_slover ...
- 【深度学习】之Caffe的solver文件配置(转载自csdn)
原文: http://blog.csdn.net/czp0322/article/details/52161759 今天在做FCN实验的时候,发现solver.prototxt文件一直用的都是mode ...
- 利用Caffe训练模型(solver、deploy、train_val)+python使用已训练模型
本文部分内容来源于CDA深度学习实战课堂,由唐宇迪老师授课 如果你企图用CPU来训练模型,那么你就疯了- 训练模型中,最耗时的因素是图像大小size,一般227*227用CPU来训练的话,训练1万次可 ...
- 利用Caffe训练模型(solver、deploy、train_val) + python如何使用已训练模型
版权声明:博主原创文章,微信公众号:素质云笔记,转载请注明来源“素质云博客”,谢谢合作!! https://blog.csdn.net/sinat_26917383/article/details/5 ...
- 【转】Caffe的solver文件配置
http://blog.csdn.net/czp0322/article/details/52161759 solver.prototxt 今天在做FCN实验的时候,发现solver.prototxt ...
随机推荐
- Successor hdu 4366 线段树
题意: 现在n个人,其中编号0的是老板,之后n-1个员工,每个员工只有一个上司,有一个忠诚值和能力值.每次要解雇一个人的时候,从他的下属中选取能力值大于他的且忠诚值最高的一个,若不存在则输出-1.共m ...
- MATLAB遍历文件夹下所有文件
先给出函数 function [ files ] = scanDir( root_dir ) files={}; if root_dir(end)~='/' root_dir=[root_dir,'/ ...
- @interface注释用法
java用 @interface Annotation{ } 定义一个注解 @Annotation,一个注解是一个类. @Override,@Deprecated,@SuppressWarnings ...
- 002.NFS相关配置项
一 配置文件(/etc/exports) 1.1 配置文件格式 <输出目录> [客户端1 选项(访问权限,用户映射,其他)] [客户端2 选项(访问权限,用户映射,其他)] 二 输出目录 ...
- PBR Step by Step(四)Lambertian反射模型
光照可分为局部光照和全局光照. 局部光照:直接照射到物体表面的光照 全局光照:物体表面受周围环境影响的光照 左图中点x接收到周围环境的光线照射,来自周围表面的反射光照称为全局光照:右图中点x接收来自太 ...
- win7如何不用点击用户名直接自动登录桌面
在 win7 系统中开机时必须点击相应的用户名才能登 陆系统桌面那么如何取消这一功能使当前账户自动登 录到系统桌面呢? 一. win7 如何自动登录 .在开始菜单搜索框输入 “netplwiz” 按回 ...
- AFO 我的oi生涯 大结局
今儿个哥几个一屋子退役了,这两天也许会写一个生涯大结局留作纪念吧. 今天就写了吧. 由于在机房的原因比一般同学获得的知识更多一些.进来总是看新闻,感慨颇多.自从两会开的第一天起,我就对我们政府采取的一 ...
- [Luogu5241]序列(DP)
固定一种构造方法,使它能够构造出所有可能的序列. 对于一个要构造的序列,把所有点排成一串,若a[i]=a[i-1],那么从1所在弱连通块往连通块后一个点连,若所有点都在一个连通块里了,就在1所在强连通 ...
- ZOJ.3551.Bloodsucker(期望DP)
题目链接 \(Description\) 有1个吸血鬼和n-1个人,每天有且只会有两个人/吸血鬼相遇,如果是人与吸血鬼相遇,那个人会有p的概率变成吸血鬼:否则什么也不发生.求n个都变成吸血鬼的期望天数 ...
- hdu 1116 敌兵布阵(树状数组区间求和)
题意: 给出一行数字,然后可以修改其中第i个数字,并且可以询问第i至第j个数字的和(i <= j). 输入: 首行输入一个t,表示共有t组数据. 接下来每行首行输入一个整数n,表示共有n个数字. ...