前面二进制加法运算,我们并没有提操作数是有符号数,还是无符号数。其实前面的二进制加法对于有符号数和无符号数都成立。比如前面的8位二进制加法运算,第一张图我们选radix是unsigned,表示无符号加法,第二张图我们选radix是decimal,表示有符号数,从图中可知结果都是正确的。对于有符号数来说,负数默认是补码的形式存在。假设二进制数是n位,则对于无符号数来说,表示范围是0~(2^n) -1 ,对于有符号数,表示的范围是-(2^(n-1))~2^(n-1) - 1

对于有符号数来说,通常还要知道加法结果数据是否溢出。有一种直观的方法判断结果是否溢出,就是如果两个加数有相同的符号,但是它们的和与它们有不同的符号,则产生溢出。假设有n位有符号二进制数x,y,它们的和为s,则它们和溢出判断公式是 overflow = xn_1&yn-1&~sn-1 + ~xn_1&~yn-1&sn-1

修改后的有符号数加法代码为:

module addern_signed(x, y, s, cout, overflow);
parameter n=8;
input [n-1:0] x;
input [n-1:0] y;
output reg[n-1:0] s;
output reg cout;
output reg overflow;
reg [n:0] c;
integer k; always @(x,y) begin
c[0] = 1'b0;
for(k = 0; k < n; k = k + 1) begin
s[k] = x[k]^y[k]^c[k];
c[k+1] = (x[k]&y[k])|(x[k]&c[k])|(y[k]&c[k]);
end
cout = c[n];
overflow = (x[n-1]&y[n-1]&~s[n-1])|(~x[n-1]&~y[n-1]&s[n-1]);
end endmodule
module addern_signed(x, y, s, cout, overflow);
parameter n=8;
input [n-1:0] x;
input [n-1:0] y;
output [n-1:0] s;
output cout;
output overflow;
integer k; assign {cout, s} = x + y ;
assign overflow = (x[n-1]&y[n-1]&~s[n-1])|(~x[n-1]&~y[n-1]&s[n-1]); endmodule

修改后的testbench文件为:

`timescale 1ns/1ns
`define clock_period 20 module addern_signed_tb;
reg [7:0] x,y; wire cout;
wire [7:0] s;
reg clk; addern_signed #(.n(8)) addern_signed_0(
.x(x),
.y(y),
.s(s),
.cout(cout)
); initial clk = 0;
always #(`clock_period/2) clk = ~clk; initial begin
x = 0;
repeat(20)
#(`clock_period) x = $random; end initial begin
y = 0;
repeat(20)
#(`clock_period) y = $random; end initial begin
#(`clock_period*20)
$stop;
end endmodule

功能验证的波形图如下:

对于有符号数的减法,我们也可以用加法来做,但是对于减数,我们要做以下变化,如果减数为正数,则变其为补码表示的负数,如果其为补码表示的负数,则把它转化为正数。

assign y1 = y[n-1]?(~{y[n-1:0]}+1'b1):(~{1'b0,y[n-2:0]}+1'b1);

module subn_signed(x, y, s, cout, overflow);
parameter n=8;
input [n-1:0] x;
input [n-1:0] y;
output reg[n-1:0] s;
output reg cout;
output reg overflow;
wire [n-1:0] y1;
reg [n:0] c;
integer k; //y commplement, if y=0, to negative with commplement,if y=1, to positive number.
assign y1 = y[n-1]?(~{y[n-1:0]}+1'b1):(~{1'b0,y[n-2:0]}+1'b1); always @(x,y1) begin
c[0] = 1'b0;
for(k = 0; k < n; k = k + 1) begin
s[k] = x[k]^y1[k]^c[k];
c[k+1] = (x[k]&y1[k])|(x[k]&c[k])|(y1[k]&c[k]);
end
cout = c[n];
overflow = (x[n-1]&y1[n-1]&~s[n-1])|(~x[n-1]&~y1[n-1]&s[n-1]);
end endmodule

module subn_signed(x, y, s, cout, overflow);
parameter n=8;
input [n-1:0] x;
input [n-1:0] y;
output [n-1:0] s;
output cout;
output overflow;
wire [n-1:0] y1;
integer k;
//y commplement, if y=0, to negative with commplement,if y=1, to positive number.
assign y1 = y[n-1]?(~{y[n-1:0]}+1'b1):(~{1'b0,y[n-2:0]}+1'b1);
assign {cout, s} = x + y1 ;
assign overflow = (x[n-1]&y1[n-1]&~s[n-1])|(~x[n-1]&~y1[n-1]&s[n-1]); endmodule

testbench代码为:

`timescale 1ns/1ns
`define clock_period 20 module subn_signed_tb;
reg [7:0] x,y; wire cout;
wire overflow;
wire [7:0] s;
reg clk; subn_signed #(.n(8)) subn_signed_0(
.x(x),
.y(y),
.s(s),
.cout(cout),
.overflow(overflow)
); initial clk = 0;
always #(`clock_period/2) clk = ~clk; initial begin
x = 0;
repeat(20)
#(`clock_period) x = $random; end initial begin
y = 0;
repeat(20)
#(`clock_period) y = $random; end initial begin
#(`clock_period*20)
$stop;
end endmodule

从功能验证的波形图中,我们可以看到见过是正确的。

Verilog 加法器和减法器(5)的更多相关文章

  1. Verilog 加法器和减法器(8)-串行加法器

    如果对速度要求不高,我们也可以使用串行加法器.下面通过状态机来实现串行加法器的功能. 设A=an-1an-2-a0, B=bn-1bn-2-b0,是要相加的两个无符号数,相加的和为:sum=sn-1s ...

  2. Verilog 加法器和减法器(4)

    类似于行波进位加法器,用串联的方法也能够实现多位二进制数的减法操作.  比如下图是4位二进制减法逻辑电路图. 8位二进制减法的verilog代码如下: module subn(x, y, d,cin) ...

  3. Verilog 加法器和减法器(7)

    在计算机中浮点数 表示通常采用IEEE754规定的格式,具体参考以下文章. https://www.cnblogs.com/mikewolf2002/p/10095995.html 下面我们在Veri ...

  4. Verilog 加法器和减法器(6)

    为了减小行波进位加法器中进位传播延迟的影响,可以尝试在每一级中快速计算进位,如果能在较短时间完成计算,则可以提高加法器性能. 我们可以进行如下的推导: 设 gi=xi&yi, pi = xi ...

  5. Verilog 加法器和减法器(3)

    手工加法运算时候,我们都是从最低位的数字开始,逐位相加,直到最高位.如果第i位产生进位,就把该位作为第i+1位输入.同样的,在逻辑电路中,我们可以把一位全加器串联起来,实现多位加法,比如下面的四位加法 ...

  6. Verilog 加法器和减法器(2)

    类似半加器和全加器,也有半减器和全减器. 半减器只考虑当前两位二进制数相减,输出为差以及是否向高位借位,而全减器还要考虑当前位的低位是否曾有借位.它们的真值表如下: 对半减器,diff = x ^y, ...

  7. Verilog 加法器和减法器(1)

    两个一位的二进制数x,y相加,假设和为s,进位为cout,其真值表为: 从真值表中,我们可以得到:s = x^y, cout = x&y,实现两个一位数相加的逻辑电路称为半加器. 实现该电路的 ...

  8. 基于Xilinx的Synthesize

    所谓综合.就是讲HDL语言.原理图等设计输入翻译成由与.或.非们和RAM.触发器登记本逻辑单元的逻辑连接(即网表).并依据目标和要求(约束条件)优化生成的逻辑连接. ISE-XST XST是Xilin ...

  9. FPGA综合工具--Synplify Pro的常用选项及命令

    最近要用到Synplify,但以前没使用过,无基础,找到一篇帖子,隧保存下来. 本文转自:http://blog.sina.com.cn/s/blog_65fe490d0100v8ax.html Sy ...

随机推荐

  1. AngularJS + ui-router + RequireJS异步加载注册controller/directive/filter/service

    一般情况下我们会将项目所用到的controller/directive/filter/sercive预先加载完再初始化AngularJS模块,但是当项目比较复杂的情况下,应该是打开对应的界面才加载对应 ...

  2. Javascript数据类型转换规则

    前言 Javascript有7种数据类型,包括5种原始类型(也叫原始值)number.Boolean.string.null.undefined和2种复合类型object.array,它们之间可以根据 ...

  3. 五校联考R1 Day2T2 矩阵matrix(容斥)

    题目链接 容易想到容斥,但是很恶心,因为要对行和列都容斥,然后行+列又要容斥.. 于是得到\(O(nm\log)\)的做法. 就有70分了: #include <cstdio> #incl ...

  4. C语言结构体及typedef关键字定义结构体别名和函数指针的应用

    结构体(struct)的初始化 struct autonlist { char *symbol; struct nlist nl[2]; struct autonlist *left, *right; ...

  5. hdu 1073 字符串处理

    题意:给一系列的输出和标准答案,比较二者是AC,PE或WA 字符串处理还是比较薄弱,目前没什么时间搞字符串专题,所以遇到一题就努力搞懂 #include<cstdio> #include& ...

  6. git 撤销本地修改

    git checkout file 例如:git checkout app/views/carts/_index_m.html.erb 可以先用 git status 查看差异 然后 git chec ...

  7. HDU 5738 Eureka 统计共线的子集个数

    Eureka 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5738 Description Professor Zhang draws n poin ...

  8. Mysql_解决The total number of locks exceeds the lock table size错误

    在操作mysql数据库表时出现以下错误. 网上google搜索相关问题,发现一位外国牛人这么解释: If you're running an operation on a large number o ...

  9. deeplearningbook-chinese

    https://exacity.github.io/deeplearningbook-chinese/

  10. SMTP协议及POP3协议-邮件发送和接收原理(转)

    本文转自https://blog.csdn.net/qq_15646957/article/details/52544099 感谢作者 一. 邮件开发涉及到的一些基本概念 1.1.邮件服务器和电子邮箱 ...