链接:https://ac.nowcoder.com/acm/contest/392/D

来源:牛客网

月月给华华出题

时间限制:C/C++ 2秒,其他语言4秒

空间限制:C/C++ 131072K,其他语言262144K

64bit IO Format: %lld

题目描述

因为月月是个信息学高手,所以她也给华华出了一题,让他求:

\sum_{i=1}^N\frac{i}{\gcd(i,N)}∑

i=1

N

gcd(i,N)

i

但是因为这个式子实在太简单了,所以月月希望华华对N=1,2,...,n各回答一次。华华一脸懵逼,所以还是决定把这个问题丢给你。

输入描述:

一个正整数n。

输出描述:

输出n行,第i行表示N=i时的答案。

示例1

输入

复制

6

输出

复制

1

2

4

6

11

11

备注:

1\le n\le 10^61≤n≤10

6

请注意输出的效率

思路:



最后一步是根据这个欧拉函数的一个得出的:

小于等于n的数中与n互质的数sum和为phi(n) * n/2

phi(x)为欧拉函数

由于题目要求输出1~n的每一个答案,那么我们从1到n枚举i当做上式中因子d来计算对每个答案的贡献即可。

细节见代码:

#include <iostream>
#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
#include <queue>
#include <stack>
#include <map>
#include <set>
#include <vector>
#include <iomanip>
#define ALL(x) (x).begin(), (x).end()
#define sz(a) int(a.size())
#define all(a) a.begin(), a.end()
#define rep(i,x,n) for(int i=x;i<n;i++)
#define repd(i,x,n) for(int i=x;i<=n;i++)
#define pii pair<int,int>
#define pll pair<long long ,long long>
#define gbtb ios::sync_with_stdio(false),cin.tie(0),cout.tie(0)
#define MS0(X) memset((X), 0, sizeof((X)))
#define MSC0(X) memset((X), '\0', sizeof((X)))
#define pb push_back
#define mp make_pair
#define fi first
#define se second
#define eps 1e-6
#define gg(x) getInt(&x)
#define chu(x) cout<<"["<<#x<<" "<<(x)<<"]"<<endl
using namespace std;
typedef long long ll;
ll gcd(ll a, ll b) {return b ? gcd(b, a % b) : a;}
ll lcm(ll a, ll b) {return a / gcd(a, b) * b;}
ll powmod(ll a, ll b, ll MOD) {ll ans = 1; while (b) {if (b % 2)ans = ans * a % MOD; a = a * a % MOD; b /= 2;} return ans;}
inline void getInt(int* p);
const int maxn = 1000010;
const int inf = 0x3f3f3f3f;
/*** TEMPLATE CODE * * STARTS HERE ***/
ll phi[maxn];
ll prime[maxn];
int check[maxn];
int tot = 0;
void build_phi()
{
phi[1] = 1ll;
memset(check, 0, sizeof(check));
for (int i = 2; i < 1000010; ++i)
{
if (!check[i])
{
prime[tot++] = i;
phi[i] = i - 1;
}
for (int j = 0; j < tot; ++j)
{
if (i * prime[j] > 1000010)
{
break;
}
check[i * prime[j]] = 1;
if (i % prime[j] == 0)
{
phi[i * prime[j]] = phi[i] * prime[j];
break;
} else {
phi[i * prime[j]] = phi[i] * (prime[j] - 1);
}
}
}
}
ll ans[maxn];
int main()
{
//freopen("D:\\common_text\\code_stream\\in.txt","r",stdin);
//freopen("D:\\common_text\\code_stream\\out.txt","w",stdout); int n;
scanf("%d", &n);
build_phi();
for (ll i = 1; i <= n; ++i)
{
for (ll j = i; j <= n; j += i)
{
ans[j] += phi[j / i] * (j / i) / 2ll;
}
}
repd(i, 1, n)
{
printf("%lld\n", ans[i] + 1ll );
} return 0;
} inline void getInt(int* p) {
char ch;
do {
ch = getchar();
} while (ch == ' ' || ch == '\n');
if (ch == '-') {
*p = -(getchar() - '0');
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 - ch + '0';
}
}
else {
*p = ch - '0';
while ((ch = getchar()) >= '0' && ch <= '9') {
*p = *p * 10 + ch - '0';
}
}
}

牛客小白月赛12 D 月月给华华出题 (欧拉函数,数论,线筛)的更多相关文章

  1. 牛客小白月赛12 J 月月查华华的手机 (序列自动机模板题)

    链接:https://ac.nowcoder.com/acm/contest/392/J 来源:牛客网 题目描述 月月和华华一起去吃饭了.期间华华有事出去了一会儿,没有带手机.月月出于人类最单纯的好奇 ...

  2. 牛客小白月赛12 J 月月查华华的手机(序列自动机)

    ---恢复内容开始--- 题目来源:https://ac.nowcoder.com/acm/contest/392/J 题意: 题目描述 月月和华华一起去吃饭了.期间华华有事出去了一会儿,没有带手机. ...

  3. 牛客网 牛客小白月赛12 B.华华教月月做数学-A^B mod P-快速幂+快速乘

    链接:https://ac.nowcoder.com/acm/contest/392/B来源:牛客网 华华教月月做数学 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 32768K,其 ...

  4. 牛客小白月赛12 H 华华和月月种树 (离线dfs序+线段树)

    链接:https://ac.nowcoder.com/acm/contest/392/H 来源:牛客网 时间限制:C/C++ 2秒,其他语言4秒 空间限制:C/C++ 131072K,其他语言2621 ...

  5. 牛客小白月赛12 C 华华给月月出题 (积性函数,线性筛)

    链接:https://ac.nowcoder.com/acm/contest/392/C 来源:牛客网 华华给月月出题 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 131072K, ...

  6. 牛客小白月赛12 I 华华和月月逛公园 (tarjian 求桥)

    链接:https://ac.nowcoder.com/acm/contest/392/I 来源:牛客网 华华和月月逛公园 时间限制:C/C++ 1秒,其他语言2秒 空间限制:C/C++ 32768K, ...

  7. 牛客小白月赛12 F 华华开始学信息学 (分块+树状数组)

    链接:https://ac.nowcoder.com/acm/contest/392/F来源:牛客网 时间限制:C/C++ 2秒,其他语言4秒 空间限制:C/C++ 32768K,其他语言65536K ...

  8. 牛客小白月赛12 H(dfs序+线段树),F(分块思想+bit),J(二分)

    H 华华和月月种树 链接:https://ac.nowcoder.com/acm/contest/392/H 思路:先得到整棵树最终的形态,在这棵树上进行三种操作,用dfs跑下,第二种操作就直接对最终 ...

  9. 牛客小白月赛12 I 华华和月月逛公园 Tarjan算法求隔边

    题目链接:https://ac.nowcoder.com/acm/contest/392/I 题意:给你一个连通的无向图,问图的隔边有多少条 输入:N,M分别是点数和边数 之后M行每行两个正整数u,v ...

随机推荐

  1. CAN总线多节点通信异常分析及解决

    一.CAN物理层特征 CAN收发器的作用是负责逻辑电平和信号电平之间的转换.即从CAN控制芯片输出逻辑电平到CAN收发器,然后经过CAN收发器内部转换将逻辑电平转换为差分信号输出到CAN总线上,CAN ...

  2. list-style-type:none是加在ul还是li中呢?

    很多时候我们都需要多对列表元素进行初始化,方法是给列表元素添加list-style-type: none,但作为小白的我是经常纠结一个问题:是把它加在ul中还是li中呢 我试了一下,加在ul和li都能 ...

  3. jQuery之替换节点

    如果要替换节点,jQuery提供了两个方法:replaceWith()和replaceAll(). 两个方法的作用相同,只是操作颠倒了. 作用:将所有匹配的元素都替换成指定的HTML或者DOM元素.( ...

  4. 【神经网络与深度学习】转-caffe安装吐血总结

    这周安装了caffe的windows版本和Linux版本,依赖关系太多,如果系统选对了,安装起来很easy,选错了,就会遇见各种坑. 1.操作系统最好使用ubuntu desktop 14.04 64 ...

  5. 【Abode Air程序开发】iOS证书(.p12)和描述文件(.mobileprovision)申请

    iOS证书(.p12)和描述文件(.mobileprovision)申请 5+App开发 Apple证书 iOS证书 iOS有两种证书和描述文件: 证书类型 使用场景 开发(Development)证 ...

  6. 【并行计算-CUDA开发】CUDA编程——GPU架构,由sp,sm,thread,block,grid,warp说起

    掌握部分硬件知识,有助于程序员编写更好的CUDA程序,提升CUDA程序性能,本文目的是理清sp,sm,thread,block,grid,warp之间的关系.由于作者能力有限,难免有疏漏,恳请读者批评 ...

  7. Linux系统定时任务介绍

    定时任务Crond介绍 1)crond是什么? 守护进程:持续运行的程序,不退出的进程. 为什么要使用crond定时任务呢? 1)Linux下定时任务的种类 at crontab  anacron 2 ...

  8. Design Snake Game

    Design a Snake game that is played on a device with screen size = width x height. Play the game onli ...

  9. Centos7 安装Jenkins (rpm 方式)

    首先说明本教程基于jenkins 2.183,但是其他版本基本差不多,主要说一下其中比较坑的几点,做一个总结. 1.rpm 包的下载 从官网上下载rpm的速度简直让人不能忍受,所以千万不要去官网下载. ...

  10. 石子合并2——区间DP【洛谷P1880题解】

    [区间dp让人头痛……还是要多写些题目练手,抽空写篇博客总结一下] 这题区间dp入门题,理解区间dp或者练手都很妙 ——题目链接—— (或者直接看下面) 题面 在一个圆形操场的四周摆放N堆石子,现要将 ...