题面

Given a m x n grid filled with non-negative numbers, find a path from top left to bottom right which minimizes the sum of all numbers along its path.

Note: You can only move either down or right at any point in time.

给定二维数组,从(0, 0)开始,只能向右和向下走,找到最小的路径和。

样例

Input:
[
  [1,3,1],
[1,5,1],
[4,2,1]
]
Output: 7
Explanation: Because the path 1→3→1→1→1 minimizes the sum.

思路

动态规划,打表。我们就模拟移动的路径。我们需要一个二维数组来存储每一步的路径值。

可以在原来二维数组基础上,直接进行操作。

第一排只能向右走得到;第一列只能向下走得到。

其他的就要参考它的上边元素值和左边元素值,取小在加上它本身,更新成为它。(因为要最小路径,所以我们要确保每一步都最小)

算法

1. 遍历第一行,当前元素值为它左边元素加上它本身(只能从左边向右边走);

2. 遍历第一列,当前元素值为它上边元素加上它本身(只能从上边向下边走);

3. 遍历二维数组其他元素,当前值为上边元素与左边元素最小值加上它本身;

4. 返回右下角元素,即是结果。

时间复杂度:O(n2)

空间复杂度:O(n2)

源码

 class Solution {
public:
int minPathSum(vector<vector<int>>& grid) {
int row = grid.size(), col = grid[].size();
if(row == )
return ;
for(int i=; i<col; i++)
{
grid[][i] += grid[][i-];
}
for(int i=; i<row; i++)
{
grid[i][] += grid[i-][];
}
for(int i=; i<row; i++)
{
for(int j=; j<col; j++)
{
grid[i][j] += min(grid[i][j-], grid[i-][j]);
}
}
return grid[row-][col-];
}
};

优化:空间压缩

其实,我们在做的过程当中,一直在做行处理,即一直在更新某一行(更新完这一行就转向下一行)。那么,我们只需要一个一维数组即可解决这个问题。

这样一来,空间就压缩到了O(n),时间复杂度不变。

(1-压缩后的;2-压缩前的)似乎空间占用也没有多大变化,但是我们确实做了空间压缩。

空间压缩源码

只用一维数组在存储状态,就要重新推导一下更新的状态方程

第一行:dp[0] = grid[0][0]

    dp[i] = grid[0][i] +  dp[i-1]

其他行:dp[0] = grid[i][0] + dp[0]

    dp[j] = grid[i][j] +  min(dp[j-1], dp[j])

 int minPathSum(vector<vector<int>>& grid) {
int row = grid.size(), col = grid[].size();
if(row == )
return ;
vector<int> dp(col, );//只要额外一维数组的空间,上一种做法,如果不原地使用原来二位数组的话,就只能额外开二维数组。
dp[] = grid[][];
for(int i=; i<col; i++)
{
dp[i] = dp[i-] + grid[][i];
}
for(int i=; i<row; i++)
{
dp[] += grid[i][];
for(int j=; j<col; j++)
{
dp[j] = min(dp[j-], dp[j]) + grid[i][j];
}
}
return dp[col-];
}

leetcode-64. 最小路径和 · vector + DP的更多相关文章

  1. leetcode 64. 最小路径和 动态规划系列

    目录 1. leetcode 64. 最小路径和 1.1. 暴力 1.2. 二维动态规划 2. 完整代码及执行结果 2.1. 执行结果 1. leetcode 64. 最小路径和 给定一个包含非负整数 ...

  2. LeetCode 64. 最小路径和(Minimum Path Sum) 20

    64. 最小路径和 64. Minimum Path Sum 题目描述 给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小. 说明: 每次只能向下或 ...

  3. Java实现 LeetCode 64 最小路径和

    64. 最小路径和 给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小. 说明:每次只能向下或者向右移动一步. 示例: 输入: [ [1,3,1], ...

  4. [LeetCode] 64. 最小路径和 ☆☆☆(动态规划)

    描述 给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小. 说明:每次只能向下或者向右移动一步. 示例: 输入:[  [1,3,1], [1,5,1 ...

  5. [LeetCode]64. 最小路径和(DP)

    题目 给定一个无序的整数数组,找到其中最长上升子序列的长度. 示例: 输入: [10,9,2,5,3,7,101,18] 输出: 4 解释: 最长的上升子序列是 [2,3,7,101],它的长度是 4 ...

  6. LeetCode 64最小路径和

    题目 给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小. 说明:每次只能向下或者向右移动一步. 示例: 输入: [   [1,3,1], [1,5 ...

  7. leetcode 64. 最小路径和Minimum Path Sum

    很典型的动态规划题目 C++解法一:空间复杂度n2 class Solution { public: int minPathSum(vector<vector<int>>&am ...

  8. Leetcode——64. 最小路径和

    题目描述:题目链接 同样对于这个问题,我们可以考虑用动态规划来解决. 解决动态规划常见的三个步骤: 1:问题的归纳.对于 i,j 位置上的最短路径可以用d[ i ][ j ]表示. 2:归纳递推式:d ...

  9. Leetcode之动态规划(DP)专题-64. 最小路径和(Minimum Path Sum)

    Leetcode之动态规划(DP)专题-64. 最小路径和(Minimum Path Sum) 给定一个包含非负整数的 m x n 网格,请找出一条从左上角到右下角的路径,使得路径上的数字总和为最小. ...

随机推荐

  1. 阶段5 3.微服务项目【学成在线】_day07 课程管理实战_02-我的课程-前端页面与Api说明

    我的课程列表使用element 的card组件,如下: 前端页面代码 点击新增到了一个新增课程的页面 新增课程的界面 下面的card是循环遍历的代码 写死的card的静态数据 请求服务端的接口拿到数据 ...

  2. Mysql的安全配置向导命令mysql_secure_installation

    mysql_secure_installation安全配置向导 [root@youxi1 ~]# mysql_secure_installation Securing the MySQL server ...

  3. jQuery BlockUI Plugin Demo 4(Element Blocking Examples)

    Element Blocking Examples This page demonstrates how to block selected elements on the page rather t ...

  4. XenServer 根分区空间满的解决办法

    1.清除已经应用的旧补丁文件 删除 /var/patch/ 下的除 applied 之外的所有文件 2.清除旧版的Xen-Tools文件 删除 /opt/xensource/packages/iso/ ...

  5. SQLPrompt 6.3.0.354 完美破解 安装于 SQL Server 2012/2014

    SQL SERVER 2012格式化 SQL SERVER 2014格式化 SQLPrompt_6.4.0.641 破解版 百度云下载 迅雷下载 百度网盘下载 SQL Prompt 是一款拥有SQL智 ...

  6. git 提交大小超过100M

    #MsnDialog.ad, #MyMoveAd, #QQ_Full, #ad-SNSSplashAd, #ad6cn, #adBody07, #adLeftFloat, #adRightFloat, ...

  7. win7下exe文件设置为开机启动

    如何将自己的exe程序设置为开机自启动 如何将自己的exe程序设置为开机自启动 将自己的exe程序设置为开机自启动话不多说,直接看 首先1:cmd—>regedit 其次找到下面的路径就可以:( ...

  8. mysql 1366错误

  9. 精选实用 Chrome 扩展(20)

    ● Reading List 简介:收藏网页,稍后阅读 ● OneTab 简介:收起当前已打开的标签页,需要的时候恢复 ● IE Tab 简介:网页用IE打开 ● uBlock Origin ● Pe ...

  10. Ubuntu将自带的python3升级

    一.这里演示的是将python3.5升级到python3.6 1.添加安装源,在命令行输入如下命令: sudo add-apt-repository ppa:jonathonf/python-3.6 ...