cordic
cordic里向量旋转得到新向量,利用的是旋转矩阵
摘自百度百科维基百科
旋转矩阵(Rotation matrix)是在乘以一个向量的时候改变向量的方向但不改变大小的效果的矩阵。旋转矩阵不包括反演,它不可以把右手坐标系改变成左手坐标系或反之。所有旋转加上反演形成了正交矩阵的集合。对于3D坐标系,任意两个坐标系却不能等价。实际上,存在两种完全不同的3D坐标系:左手坐标系和右手坐标系。如果同属于左手坐标系或者右手坐标系,则可以通过旋转来重合,否则不可以
参考文献:
基于CORDIC 改进算法的反正切函数
在FPGA 中的实现
刘小会1,许蕾2,刘海颖2,王惠南1
cordic的更多相关文章
- CORDIC原理与FPGA实现(2)
CORDIC算法实现极坐标(polar)到直角坐标系(Cartesian)的变换. 1: function [horizonal,vertical]=polar2car(mag, pha); 2: x ...
- CORDIC原理与FPGA实现(1)
CORDIC算法的来历与用途大家网上随处可以见到,这里写 一下自己的理解. 将P(x,y)旋转角度a得到新的坐标P’(x’,y’).这里的坐标变换为: x’= x cos(a) – y sin(a) ...
- 三角函数计算,Cordic 算法入门
[-] 三角函数计算Cordic 算法入门 从二分查找法说起 减少乘法运算 消除乘法运算 三角函数计算,Cordic 算法入门 三角函数的计算是个复杂的主题,有计算机之前,人们通常通过查找三角函数表来 ...
- (转)三角函数计算,Cordic 算法入门
由于最近要使用atan2函数,但是时间上消耗比较多,因而网上搜了一下简化的算法. 原帖地址:http://blog.csdn.net/liyuanbhu/article/details/8458769 ...
- 基于FPGA的cordic算法的verilog初步实现
最近在看cordic算法,由于还不会使用matlab,真是痛苦,一系列的笔算才大概明白了这个算法是怎么回事.于是尝试用verilog来实现.用verilog实现之前先参考软件的程序,于是先看了此博文h ...
- Cordic 算法之 反正切
在通信的算法中,常采用Cordic算法之一,知道角度产生正交的的正弦余弦, 或者知道正弦和余弦求角度,求反正切. 1. 求正弦和余弦值. 方法:旋转角度,得到正弦余弦值: 再旋转角度,到达下一个正弦余 ...
- Cordic 算法的原理介绍
cordic 算法知道正弦和余弦值,求反正切,即角度. 采用用不断的旋转求出对应的正弦余弦值,是一种近似求解发. 旋转的角度很讲求,每次旋转的角度必须使得 正切值近似等于 1/(2^N).旋转的目的是 ...
- Cordic算法——verilog实现
上两篇博文Cordic算法--圆周系统之旋转模式.Cordic算法--圆周系统之向量模式做了理论分析和实现,但是所用到的变量依然是浮点型,而cordic真正的用处是基于FPGA等只能处理定点的平台.只 ...
- Cordic算法——圆周系统之向量模式
旋转模式用来解决三角函数,实现极坐标到直角坐标的转换,基础理论请参考Cordic算法--圆周系统之旋转模式.那么,向量模式则用来解决反三角函数的问题,体现的应用主要是直角坐标向极坐标转换,即已知一点的 ...
- Cordic算法——圆周系统之旋转模式
三角函数的计算是个复杂的主题,有计算机之前,人们通常通过查找三角函数表来计算任意角度的三角函数的值.这种表格在人们刚刚产生三角函数的概念的时候就已经有了,它们通常是通过从已知值(比如sin(π/2)= ...
随机推荐
- Qt 打包发布程序
利用Qt Creator写好程序,选择对应的编译器编译程序. 编译完成会在项目同级目录生成对应的目录来保存编译后的输出. 打包程序就要选择Qt自带的CMD工具,分别有下面几种. 比如,打包VS2017 ...
- 学习CSS布局 - dispaly属性
"display"属性 display 是CSS中最重要的用于控制布局的属性. 每个元素都有一个默认的 display 值,这与元素的类型有关. 对于大多数元素它们的默认值通常是 ...
- python winpdb远程调试
1.使用rpdb2.start_embedded_debugger ,注意要将参数fAllowRemote 设置为True 2.winpdb前端GUI使用python2 3.rpdb兼容python2 ...
- ajax获取的数据如何渲染到dom元素上
1.常见的字符串拼接 (对于动态创建的元素添加js时,使用事件委托,利用事件冒泡的原理,把事件添加到父级元素上,触发执行效果) $("ul").on('click','li',fu ...
- Luogu P1896 [SCOI2005]互不侵犯
一道超级简单的状压DP题所以说状压是个好东西 看数据范围,同时我们发现一个格子要么放国王or不放,因此可以用二进制数来表示某一行的国王放置信息 于是我们马上想到用\(f_{i,j}\)表示放了前\(i ...
- Oracle 社区动态、中文讲座,最佳实践
https://community.oracle.com/thread/3789691https://community.oracle.com/community/support/%E4%B8%AD% ...
- Scala学习(五)---Scala中的类
Scala中的类 摘要: 在本篇中,你将会学习如何用Scala实现类.如果你了解Java或C++中的类,你不会觉得这有多难,并且你会很享受Scala更加精简的表示法带来的便利.本篇的要点包括: 1. ...
- Visual Studio2017 数据库架构比较
一.前言 开发的时候在测试服务器上和线网服务器上面都有我们的数据库,当我们在线网上面修改或者新增一些字段后,线网的数据库也需要更新,这个时候根据表的修改记录,然后在线网上面一个一个增加修改很浪费效率而 ...
- springboot undertow替换tomcat方式
版权声明: https://blog.csdn.net/weixin_38187317/article/details/81532560说明 undertow,jetty和tomcat可 ...
- C_数据结构_递归实现求阶乘
# include <stdio.h> int main(void) { int val; printf("请输入一个数字:"); printf("val = ...