HDU 5734 Acperience(返虚入浑)
HDU 5734 Acperience(返虚入浑)
Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)
Problem Description - 题目描述
Deep neural networks (DNN) have shown significant improvements in several application domains including computer vision and speech recognition. In computer vision, a particular type of DNN, known as Convolutional Neural Networks (CNN), have demonstrated state-of-the-art results in object recognition and detection.
Convolutional neural networks show reliable results on object recognition and detection that are useful in real world applications. Concurrent to the recent progress in recognition, interesting advancements have been happening in virtual reality (VR by Oculus), augmented reality (AR by HoloLens), and smart wearable devices. Putting these two pieces together, we argue that it is the right time to equip smart portable devices with the power of state-of-the-art recognition systems. However, CNN-based recognition systems need large amounts of memory and computational power. While they perform well on expensive, GPU-based machines, they are often unsuitable for smaller devices like cell phones and embedded electronics.
In order to simplify the networks, Professor Zhang tries to introduce simple, efficient, and accurate approximations to CNNs by binarizing the weights. Professor Zhang needs your help.
Note that denotes the Euclidean norm (i.e.
, where X=(x1,x2,...,xn)).
深度神经网络(DNN)对诸如计算机视觉与语音识别等领域具有显著的改善作用。DNN在计算机视觉中的特例为卷积神经网络(CNN),这是对象识别与检测的高端成果。
卷积神经网络为对象识别与检测提供可靠结果,在三次元领域十分有用。在识别进步的同时,虚拟现实(VR by Oculus),增强现实(AR by HoloLens),与智能穿戴设备也出现了有趣的进展。合而观之,是时候为智能穿戴搭载尖端识别系统了。然而基于CNN的识别系统需要大量的内存与高超的计算性能。虽然他们在基于GPU的昂贵机器上表现良好,但在例如手机与嵌入式之类的小设备上就坑爹了。
为了简化网络,张教授尝试通过简明扼要的二进制权重估计CNN的精确近似值。教授需要你的帮助。
简而言之,先给你一个加权向量W=(w1,w2,...,wn)。张教授想找出一个二进制向量B=(b1,b2,...,bn) (bi∈{+,−})与一个缩放系数α≥0使得||W - αB||^2最小。
注意||·||表示欧几里德范数(即||X||^ = (x1^ + ... xn^),其中X=(x1,x2,...,xn))。
CN
Input - 输入
There are multiple test cases. The first line of input contains an integer T, indicating the number of test cases. For each test case:
多组测试用例。输入的第一行为一个整数T,表示测试用例的数量。对于每个测试用例: 第一行为一个整数n (≤n≤)——向量的长度。下一行有n个整数w1,w2,...,wn (−≤wi≤)。
CN
Output - 输出
For each test case, output the minimum value of ||W - αB||2 as an irreducible fraction "p/q" where p, q are integers, q>0.
对于每组测试用例,输出以不可约分数"p/q"的表示||W - αB||^2最小值,此处p与q为整数,q>。
CN
Sample Input - 输入样例
3
4
1 2 3 4
4
2 2 2 2
5
5 6 2 3 4
Sample Output - 输出样例
5/1
0/1
10/1
题解
一般的公式推倒

此时已基本是一元二次不等式,设


带入,得

因为opt>=0,所以要使opt最小,则b最大。
即
代码 C++
#include <cstdio>
#include <cstdlib>
#define mx 100005
__int64 GCD(__int64 a, __int64 b){
__int64 c;
while (c = a%b) a = b, b = c;
return b;
}
int main(){
__int64 t, n, i, tmp, c, b;
for (scanf("%I64d", &t); t; --t){
c = b = tmp = ;
for (i = scanf("%I64d", &n); i <= n; ++i){
scanf("%I64d", &tmp);
c += tmp * tmp;
b += abs(tmp);
}
c = c*n - b*b;
tmp = GCD(c, n);
printf("%I64d/%I64d\n", c / tmp, n / tmp);
}
return ;
}
HDU 5734 Acperience(返虚入浑)的更多相关文章
- HDU 5734 Acperience (推导)
Acperience 题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5734 Description Deep neural networks (DN ...
- hdu 5734 Acperience 水题
Acperience 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5734 Description Deep neural networks (DN ...
- HDU 5734 Acperience
Acperience Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total ...
- hdu 5734 Acperience(2016多校第二场)
Acperience Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total ...
- HDU 5734 Acperience (公式推导) 2016杭电多校联合第二场
题目:传送门. #include <iostream> #include <algorithm> #include <cstdio> #include <cs ...
- HDU 5734 Acperience(数学推导)
Problem Description Deep neural networks (DNN) have shown significant improvements in several applic ...
- HDU 5734 Acperience ( 数学公式推导、一元二次方程 )
题目链接 题意 : 给出 n 维向量 W.要你构造一个 n 维向量 B = ( b1.b2.b3 ..... ) ( bi ∈ { +1, -1 } ) .然后求出对于一个常数 α > 0 使得 ...
- HDU 5734 A - Acperience
http://acm.hdu.edu.cn/showproblem.php?pid=5734 Problem Description Deep neural networks (DNN) have s ...
- Acperience HDU - 5734
Deep neural networks (DNN) have shown significant improvements in several application domains includ ...
随机推荐
- 【iCore3 双核心板】例程二十:LAN_TCPC实验——以太网数据传输
实验指导书及代码包下载: http://pan.baidu.com/s/1pJY5uXH iCore3 购买链接: https://item.taobao.com/item.htm?id=524229 ...
- LoadRunner11.00入门教程
安装成功后,根据教程,有自带的应用程序供新手快速掌握Loadrunner的使用.测试应用是一个基于web的旅行社应用程序,也就是供用户在线预订机票的应用.根据教程和操作,重新总结一下测试流程以及遇到的 ...
- ssh增加密匙登录
使用要创建登录密匙的账号登录 生成密匙 #ssh-keygen -t rsa 生成时提示输入密码,如果不输入,则直接回车即可,如果输入,将在无密匙登陆时要求输入该密码 进入生成目录.ssh #cd ~ ...
- centos安装后iptables基本设置
一.首先关闭防火墙#service iptables stop 二.查看状态,确认关闭#service iptables status 三.清除掉防火墙规则#iptables -F#iptables ...
- linq查询结果转换为指定字段类型的list集合
转换查询结果为ProductId字段的类型的list集合 (from s in _db.Mobile_TeamAction || s.ActionStatus == select new { s.Pr ...
- 树莓派wiringPi库详解
wiringPi是一个很棒的树莓派IO控制库,使用C语言开发,提供了丰富的接口:GPIO控制,中断,多线程,等等.java 的pi4j项目也是基于wiringPi的,我最近也在看源代码,到时候整理好了 ...
- RAC转换为RAC One Node
1.查看数据库状态 [oracle@rone1 ~]$ srvctl config database -d rone Database unique name: rone Database name: ...
- 文件上传(java web)
文件上传: 对表单的要求: * method="post" * enctype="multipart/form-data" * 表单中需要添加文件表单项:< ...
- 我的新发现:AVL树旋转的一个特性
关于AVL树旋转的代码网络上铺天盖地. 一些经典的实现方法如下: AVLTree SingleLeftRotation(AVLTree A) { AVLTree B = A->left; A-& ...
- R.java 文件内报错:Underscores can only be used with source level 1.7 or greater。
R.java 文件内报错:Underscores can only be used with source level 1.7 or greater 网上查找后得知是Android工程图片资源命名的问 ...