HDU 5734 Acperience(返虚入浑)
HDU 5734 Acperience(返虚入浑)
Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)
Problem Description - 题目描述
Deep neural networks (DNN) have shown significant improvements in several application domains including computer vision and speech recognition. In computer vision, a particular type of DNN, known as Convolutional Neural Networks (CNN), have demonstrated state-of-the-art results in object recognition and detection.
Convolutional neural networks show reliable results on object recognition and detection that are useful in real world applications. Concurrent to the recent progress in recognition, interesting advancements have been happening in virtual reality (VR by Oculus), augmented reality (AR by HoloLens), and smart wearable devices. Putting these two pieces together, we argue that it is the right time to equip smart portable devices with the power of state-of-the-art recognition systems. However, CNN-based recognition systems need large amounts of memory and computational power. While they perform well on expensive, GPU-based machines, they are often unsuitable for smaller devices like cell phones and embedded electronics.
In order to simplify the networks, Professor Zhang tries to introduce simple, efficient, and accurate approximations to CNNs by binarizing the weights. Professor Zhang needs your help.
Note that  denotes the Euclidean norm (i.e.
, where X=(x1,x2,...,xn)).
深度神经网络(DNN)对诸如计算机视觉与语音识别等领域具有显著的改善作用。DNN在计算机视觉中的特例为卷积神经网络(CNN),这是对象识别与检测的高端成果。
卷积神经网络为对象识别与检测提供可靠结果,在三次元领域十分有用。在识别进步的同时,虚拟现实(VR by Oculus),增强现实(AR by HoloLens),与智能穿戴设备也出现了有趣的进展。合而观之,是时候为智能穿戴搭载尖端识别系统了。然而基于CNN的识别系统需要大量的内存与高超的计算性能。虽然他们在基于GPU的昂贵机器上表现良好,但在例如手机与嵌入式之类的小设备上就坑爹了。
为了简化网络,张教授尝试通过简明扼要的二进制权重估计CNN的精确近似值。教授需要你的帮助。
简而言之,先给你一个加权向量W=(w1,w2,...,wn)。张教授想找出一个二进制向量B=(b1,b2,...,bn) (bi∈{+,−})与一个缩放系数α≥0使得||W - αB||^2最小。
注意||·||表示欧几里德范数(即||X||^ = (x1^ + ... xn^),其中X=(x1,x2,...,xn))。
CN
Input - 输入
There are multiple test cases. The first line of input contains an integer T, indicating the number of test cases. For each test case:
多组测试用例。输入的第一行为一个整数T,表示测试用例的数量。对于每个测试用例: 第一行为一个整数n (≤n≤)——向量的长度。下一行有n个整数w1,w2,...,wn (−≤wi≤)。
CN
Output - 输出
For each test case, output the minimum value of ||W - αB||2 as an irreducible fraction "p/q" where p, q are integers, q>0.
对于每组测试用例,输出以不可约分数"p/q"的表示||W - αB||^2最小值,此处p与q为整数,q>。
CN
Sample Input - 输入样例
3
4
1 2 3 4
4
2 2 2 2
5
5 6 2 3 4
Sample Output - 输出样例
5/1
0/1
10/1
题解
一般的公式推倒

此时已基本是一元二次不等式,设
 

带入,得

因为opt>=0,所以要使opt最小,则b最大。
即
代码 C++
#include <cstdio>
#include <cstdlib>
#define mx 100005
__int64 GCD(__int64 a, __int64 b){
__int64 c;
while (c = a%b) a = b, b = c;
return b;
}
int main(){
__int64 t, n, i, tmp, c, b;
for (scanf("%I64d", &t); t; --t){
c = b = tmp = ;
for (i = scanf("%I64d", &n); i <= n; ++i){
scanf("%I64d", &tmp);
c += tmp * tmp;
b += abs(tmp);
}
c = c*n - b*b;
tmp = GCD(c, n);
printf("%I64d/%I64d\n", c / tmp, n / tmp);
}
return ;
}
HDU 5734 Acperience(返虚入浑)的更多相关文章
- HDU 5734 Acperience (推导)
		
Acperience 题目链接: http://acm.hdu.edu.cn/showproblem.php?pid=5734 Description Deep neural networks (DN ...
 - hdu 5734 Acperience 水题
		
Acperience 题目连接: http://acm.hdu.edu.cn/showproblem.php?pid=5734 Description Deep neural networks (DN ...
 - HDU 5734 Acperience
		
Acperience Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total ...
 - hdu 5734 Acperience(2016多校第二场)
		
Acperience Time Limit: 4000/2000 MS (Java/Others) Memory Limit: 65536/65536 K (Java/Others)Total ...
 - HDU 5734 Acperience (公式推导)  2016杭电多校联合第二场
		
题目:传送门. #include <iostream> #include <algorithm> #include <cstdio> #include <cs ...
 - HDU 5734 Acperience(数学推导)
		
Problem Description Deep neural networks (DNN) have shown significant improvements in several applic ...
 - HDU 5734 Acperience ( 数学公式推导、一元二次方程 )
		
题目链接 题意 : 给出 n 维向量 W.要你构造一个 n 维向量 B = ( b1.b2.b3 ..... ) ( bi ∈ { +1, -1 } ) .然后求出对于一个常数 α > 0 使得 ...
 - HDU 5734   A - Acperience
		
http://acm.hdu.edu.cn/showproblem.php?pid=5734 Problem Description Deep neural networks (DNN) have s ...
 - Acperience HDU - 5734
		
Deep neural networks (DNN) have shown significant improvements in several application domains includ ...
 
随机推荐
- ul+li标签制作表格
			
table标签制作表格代码繁琐,且不方便后期代码维护. li标签加上css的浮动样式可以制作多种样式的表格. 代码如下: <ul id="ttttt" style=" ...
 - 我的web框架设计
			
做了很久的web开发,学了webform和mvc自己总结了,觉得当下的构架还是有改进的可能的. 其实首先说下我的一些认识(个人认知,欢迎讨论,谢绝砸砖). 我觉得对计算机和数据的操作,本身就是一个单向 ...
 - PHPExcel导出数据
			
require_once './class/Excel/PHPExcel.php'; //将(1,1)转换成"A1"形式 function getCoordinate($row, ...
 - Android WebView常见问题及解决方案汇总
			
Android WebView常见问题解决方案汇总: 就目前而言,如何应对版本的频繁更新呢,又如何灵活多变地展示我们的界面呢,这又涉及到了web app与native app之间孰优孰劣的争论. 于是 ...
 - JQuery-事件(部分)
			
/* 1. bind跟on是类似的方法,下面示例可相互替换 $('#click1').on('click',toYellow); // click绑定toYellow方法 $('#click1').o ...
 - Space Ant---poj1696(极角排序)
			
题目链接:http://poj.org/problem?id=1696 题意:给你n个点,然后我们用一条线把它们连起来,形成螺旋状: 首先找到左下方的一个点作为起点,然后以它为原点进行极角排序,找到极 ...
 - [SLAM]2D激光扫描匹配方法
			
1.Beam Model 2.Likehood field for k=1:size(zt,1) if zt(k,2)>0 d = -grid_dim/2; else d = grid_dim/ ...
 - input上传按钮 文字修改办法
			
解决思路是把input 放在文字的上边,弄成透明的,这样在点文字时,实际是点击了input,这样就实现了文件的上传. 具体代码: <style> #uploadImg{ font-size ...
 - 成都PC网站建设需要考虑哪些费用呢
			
亿合科技PC建设小编分享下:成都PC网站建设需要考虑哪些费用呢?随互联网的发展,越来越多人想建设自己网站,站长最关心的问题之一就是网站建设需要多少钱.每个网站建设的费用都是不一样的,但是都需要涵盖几个 ...
 - 远程无法连接Mysql 的解决方案
			
问题描述: 新安装了MySQL 5.6,使用root用户无法远程连接, 提示Host 'xxx.xxx.xxx.xxx' is not allowed to connect to this MySQL ...