题目描述

  一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级。求该青蛙跳上一个n级的台阶总共有多少种跳法。
问题分析
  由于每次跳的阶数不确定,没有一个固定的规律,但是可以了解的是后一次跳是在前一次跳的结果上累加的,因此我们可以考虑使用递归的方法来解决问题。
  那么从递归的三个步骤开始寻找解决方案:
  1. 递归截止条件。
  由于每次可以跳1-n的任意阶数,因此无论有多少阶,都可以一次跳完,为了表示方便,我们将一次性跳完的情况设为F(0),当n=1时,只能有一种情况,F(1) = 1。当n=2时,可以每次跳1阶,也可以一次跳两阶,则F(2) = 2。
  2. 递归的前后衔接。
  假设现在又n阶,可以跳完n阶的情况分别是:一次跳完F(0);先跳一步F(1),后面还有F(n-1)种跳法;或者先跳两步F(2),后面还有F(n-2)种跳法。依次类推,第一次跳出n阶后,后面还有 F(n-n)中跳法。可以得出:
   F(n) = F(n-1)+F(n-2)+F(n-3)+..........+F(0)
  3. 递归节点数据的处理。
  根据题目,本题目中用到的递归只是统计前后计数,并没有数据处理。对于其他递归,可以具体情况具体对待。
源码
 
     public int JumpFloorII(int target) {
if(target==0||target==1)
return 1;
if(target==2)
return 2;
int sum = 0;
for(int i=0;i<target;i++){
sum += JumpFloorII(i);
}
return sum;
}
 
 
 

剑指offer——变态跳台阶的更多相关文章

  1. (原)剑指offer变态跳台阶

    变态跳台阶 时间限制:1秒空间限制:32768K 题目描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法.   分析一下明天是个斐波那契 ...

  2. 剑指Offer 变态跳台阶

    题目描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法.   其实就是斐波那契数列问题. 假设f(n)是n个台阶跳的次数. f(1) = ...

  3. 用js刷剑指offer(变态跳台阶)

    一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法. 牛客网链接 思路 假设青蛙跳上一个n级的台阶总共有f(n)种跳法. 现在青蛙从第n个台阶 ...

  4. 《剑指offer》 跳台阶

    本题来自<剑指offer> 跳台阶 题目1: 一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果). 思路: 同上一篇. C ...

  5. 剑指offer:跳台阶

    目录 题目 解题思路 具体代码 题目 题目链接 剑指offer:跳台阶 题目描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果). ...

  6. 剑指offer例题——跳台阶、变态跳台阶

    题目:一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果). 思路: n<=0时,有0种跳法 n=1时,只有一种跳法 n=2时,有 ...

  7. 牛客网——剑指offer(跳台阶以及变态跳台阶_java实现)

    首先说一个剪枝的概念: 剪枝出现在递归和类递归程序里,因为递归操作用图来表示就是一棵树,树有很多分叉,如果不作处理,就有很多重复分叉,会降低效率,如果能把这些分叉先行记录下来,就可以大大提升效率——这 ...

  8. 剑指offer:跳台阶问题

    基础跳台阶 题目 一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果). 解题思路 这道题就是斐波那契数列的变形问法,因为跳上第N个台阶 ...

  9. Go语言实现:【剑指offer】跳台阶

    该题目来源于牛客网<剑指offer>专题. 一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果). 1阶:共1种跳法: 2阶 ...

随机推荐

  1. cat命令在文件中插入内容

    eg: cat>> xxx <<EOFinsert 1insert 2 EOF

  2. javax.el.PropertyNotFoundException: 异常处理

    javax.el.PropertyNotFoundException: Property 'policyId' not found on type com.omhy.common.model.enti ...

  3. nyoj-204

    描述国王有一个魔镜,可以把任何接触镜面的东西变成原来的两倍——只是,因为是镜子嘛,增加的那部分是反的. 比如一条项链,我们用AB来表示,不同的字母表示不同颜色的珍珠.如果把B端接触镜面的话,魔镜会把这 ...

  4. Windows 8.1升级至Windows 10后,启动VisualSVN Server Manager报错:提供程序无法执行所尝试的操作 (0x80041024)的解决

    1.1.Windows 8.1升级至Windows 10后,启动VisualSVN Server Manager报错:提供程序无法执行所尝试的操作 (0x80041024),VisualSVN Ser ...

  5. 一个关于Delphi XML处理单元的BUG

    使用delphi的XML处理单元 XMLDoc XMLIntf 在获取XML文本内容的时候, 高版本的Delphi会丢失编码描述....在D7上却是正常的, 下面是测试源码: procedure TF ...

  6. Linux内核设计第五周——扒开系统调用三层皮(下)

    Linux内核设计第五周 ——扒开系统调用三层皮(下) 一.知识点总结 1.给MenuOS增加新的命令的步骤 更新menu代码到最新版 test.c中main函数里,增加MenuConfig() 增加 ...

  7. linux下python安装到指定目录

    由于使用公司服务器时没有root权限,只能把python安装到个人文件夹下,使用源码包方式安装,这里记录一下. 1.python下载 cd到目录/users/w,在此目录下安装python.通过wge ...

  8. c# word 转pdf 导出失败,因为此功能尚未安装

    savePDF应该是office2007以上的版本才支持的,而且必须是完整版的office. 如果2007提示这个错误,还需要安装一个插件 http://download.microsoft.com/ ...

  9. iOS cocospods Updating local specs repositories

    pod install --verbose --no-repo-update (在安装的时候) pod update --verbose --no-repo-update (在更新库的时候) 如果长时 ...

  10. zabbix自动发现监控url

    1.在监控客户机上 web_site_code_status.sh: #!/bin/bash UrlFile="/opt/scripts/WEB.txt" IFS=$'\n' we ...