题目描述

  一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级。求该青蛙跳上一个n级的台阶总共有多少种跳法。
问题分析
  由于每次跳的阶数不确定,没有一个固定的规律,但是可以了解的是后一次跳是在前一次跳的结果上累加的,因此我们可以考虑使用递归的方法来解决问题。
  那么从递归的三个步骤开始寻找解决方案:
  1. 递归截止条件。
  由于每次可以跳1-n的任意阶数,因此无论有多少阶,都可以一次跳完,为了表示方便,我们将一次性跳完的情况设为F(0),当n=1时,只能有一种情况,F(1) = 1。当n=2时,可以每次跳1阶,也可以一次跳两阶,则F(2) = 2。
  2. 递归的前后衔接。
  假设现在又n阶,可以跳完n阶的情况分别是:一次跳完F(0);先跳一步F(1),后面还有F(n-1)种跳法;或者先跳两步F(2),后面还有F(n-2)种跳法。依次类推,第一次跳出n阶后,后面还有 F(n-n)中跳法。可以得出:
   F(n) = F(n-1)+F(n-2)+F(n-3)+..........+F(0)
  3. 递归节点数据的处理。
  根据题目,本题目中用到的递归只是统计前后计数,并没有数据处理。对于其他递归,可以具体情况具体对待。
源码
 
     public int JumpFloorII(int target) {
if(target==0||target==1)
return 1;
if(target==2)
return 2;
int sum = 0;
for(int i=0;i<target;i++){
sum += JumpFloorII(i);
}
return sum;
}
 
 
 

剑指offer——变态跳台阶的更多相关文章

  1. (原)剑指offer变态跳台阶

    变态跳台阶 时间限制:1秒空间限制:32768K 题目描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法.   分析一下明天是个斐波那契 ...

  2. 剑指Offer 变态跳台阶

    题目描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法.   其实就是斐波那契数列问题. 假设f(n)是n个台阶跳的次数. f(1) = ...

  3. 用js刷剑指offer(变态跳台阶)

    一只青蛙一次可以跳上1级台阶,也可以跳上2级……它也可以跳上n级.求该青蛙跳上一个n级的台阶总共有多少种跳法. 牛客网链接 思路 假设青蛙跳上一个n级的台阶总共有f(n)种跳法. 现在青蛙从第n个台阶 ...

  4. 《剑指offer》 跳台阶

    本题来自<剑指offer> 跳台阶 题目1: 一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果). 思路: 同上一篇. C ...

  5. 剑指offer:跳台阶

    目录 题目 解题思路 具体代码 题目 题目链接 剑指offer:跳台阶 题目描述 一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果). ...

  6. 剑指offer例题——跳台阶、变态跳台阶

    题目:一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果). 思路: n<=0时,有0种跳法 n=1时,只有一种跳法 n=2时,有 ...

  7. 牛客网——剑指offer(跳台阶以及变态跳台阶_java实现)

    首先说一个剪枝的概念: 剪枝出现在递归和类递归程序里,因为递归操作用图来表示就是一棵树,树有很多分叉,如果不作处理,就有很多重复分叉,会降低效率,如果能把这些分叉先行记录下来,就可以大大提升效率——这 ...

  8. 剑指offer:跳台阶问题

    基础跳台阶 题目 一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果). 解题思路 这道题就是斐波那契数列的变形问法,因为跳上第N个台阶 ...

  9. Go语言实现:【剑指offer】跳台阶

    该题目来源于牛客网<剑指offer>专题. 一只青蛙一次可以跳上1级台阶,也可以跳上2级.求该青蛙跳上一个n级的台阶总共有多少种跳法(先后次序不同算不同的结果). 1阶:共1种跳法: 2阶 ...

随机推荐

  1. Java_Eclipse安装Git插件

    一.从官网选择系统版本下载Git并安装 地址:https://git-scm.com/downloads/ 二.打开Eclipse 1. 第一种安装方法: help-->Install New ...

  2. spark reduce类操作

    reduce类函数分析: ---------------------------------------------------------------------------- 待补全 ------ ...

  3. ArcGIS AddIN开发异常之--“ValidateAddInXMLTask”任务意外失败

     ArcGIS AddIN开发时,产生如下异常错误 2 “ValidateAddInXMLTask”任务意外失败.System.NullReferenceException: 未将对象引用设置到对象的 ...

  4. sql 执行 delete 的时候,结合子查询 exists ,怎样支持别名呢?

    在做一个数据删除的时候,条件需要用到关联其他表,用到子查询,但是查询的时候使用 别名 没有问题,但是删除就有语法错误,在网上查询后得到了完美解决: --查询出来需要删除的数据 select * fro ...

  5. 运行在VMware上的Linux虚拟机如何使用NAT模式连接物理机的外部网络

    在VMware Workstation中,默认有3个虚拟交换机,分别是VMnet0(使用桥接网络).VMnet1(仅主机网络)和VMnet8(NAT网络). 首先说一下为什么要用NAT模式,如果你的物 ...

  6. 使用JDBC批量保存数据(JdbcDaoSupport,JdbcTemplete)

    最近做的一个项目中用到了Hibernate的,然后数据库批量插入数据的时候就使用到了hibernate的批处理,但是效率比较低,看网上说还有一些限制,要禁止二级缓存,还要多一个batch_size的配 ...

  7. javascript中的删除方法

    可能呢再开发的过程中呢使用的不是很多,但是碰上呢可以注意下 1.比如: var x = 10; delete x; console.log(x); 结果是多少,是10,不是异常也不是undefined ...

  8. thinkphp自定义权限管理之名称判断

    权限管理,就是给不同的用户分配不同的权限.当用户登录或者操作时候进行判断,来阻止用户进行权限以外的操作.本次讲的是当用户登录一刻,只显示权限开启的内容. 一.建立数据库. 1.权限表funcla.来存 ...

  9. Mac 系统下cocos2dx 环境变量设置

    Mac 系统环境变量设置   vim ~/.bash_profile    export PATH=$PATH:/Users/wangchengcheng/Downloads/LearningSoft ...

  10. Linux内核总结

    1.文件系统就是数据的存储结构,不要以为你的硬盘存储东西理所当然,没有文件系统,你存的只是0010101101100 2.内存管理是计算机运行时内存的分配和使用. 3.进程管理就是说每次执行一个程序都 ...