题目链接

BZOJ2396

题解

一种快速判断两个矩阵是否相等的方法:

对于两个\(n * n\)矩阵,两边同时乘一个\(n * 1\)的随机矩阵,如果结果相等,那么有很大概率两个矩阵相等

如果左边是\(A * B\)的话,用矩阵的结合律先让\(B\)乘就好了,这样子总是一个\(n * n\)的矩阵乘一个\(n * 1\)的矩阵

复杂度\(O(n^2)\)

#include<iostream>
#include<cstdio>
#include<cmath>
#include<cstdlib>
#include<cstring>
#include<algorithm>
#define LL long long int
#define Redge(u) for (int k = h[u],to; k; k = ed[k].nxt)
#define REP(i,n) for (int i = 1; i <= (n); i++)
#define BUG(s,n) for (int i = 1; i <= (n); i++) cout<<s[i]<<' '; puts("");
using namespace std;
const int maxn = 1005,maxm = 100005,INF = 1000000000;
inline int read(){
int out = 0,flag = 1; char c = getchar();
while (c < 48 || c > 57){if (c == '-') flag = -1; c = getchar();}
while (c >= 48 && c <= 57){out = (out << 3) + (out << 1) + c - 48; c = getchar();}
return out * flag;
}
int a[maxn][maxn],b[maxn][maxn],c[maxn][maxn],d[maxn];
int s[maxn],t1[maxn],t2[maxn],n,flag;
void mul(int a[][maxn],int b[maxn],int s[maxn]){
REP(i,n){
s[i] = 0;
REP(j,n) s[i] += a[i][j] * b[j];
}
}
int main(){
while (~scanf("%d",&n)){
flag = true;
REP(i,n) REP(j,n) a[i][j] = read();
REP(i,n) REP(j,n) b[i][j] = read();
REP(i,n) REP(j,n) c[i][j] = read();
REP(i,n) d[i] = rand();
mul(b,d,s);
mul(a,s,t1);
mul(c,d,t2);
REP(i,n) if (t1[i] != t2[i]) {puts("No"); flag = false; break;}
if (flag) puts("Yes");
}
return 0;
}

BZOJ2396 神奇的矩阵 【随机化 + 矩乘】的更多相关文章

  1. bzoj2396: 神奇的矩阵

    与51nod1140一样.不过这题是多组数据的...坑.... #include<cstdio> #include<cstring> #include<cctype> ...

  2. bzoj2396: 神奇的矩阵(矩阵乘法+随机化)

    这题n三方显然会GG... 运用矩阵乘法的性质A*B*R=A*(B*R)=C*R,于是随机化出一个一列的R,就可以把复杂度降低成n方...大概率是不会错的 #include<iostream&g ...

  3. 【bzoj2396】神奇的矩阵 随机化

    题目描述 给出三个行数和列数均为N的矩阵A.B.C,判断A*B=C是否成立. 输入 题目可能包含若干组数据.对于每组数据,第一行一个数N,接下来给出三个N*N的矩阵,依次为A.B.C三个矩阵. 输出 ...

  4. bzoj2396 神奇的矩阵(随机化)

    Time Limit: 5 Sec  Memory Limit: 512 MB 给出三个行数和列数均为N的矩阵A.B.C,判断A*B=C是否成立. 题目可能包含若干组数据.    对于每组数据,第一行 ...

  5. [Swust OJ 1126]--神奇的矩阵(BFS,预处理,打表)

    题目链接:http://acm.swust.edu.cn/problem/1126/ Time limit(ms): 1000 Memory limit(kb): 65535 上一周里,患有XX症的哈 ...

  6. 神奇的矩阵 NOI模拟题

    神奇的矩阵 题目大意 有一个矩阵\(A\),第一行是给出的,接下来第\(x\)行,第\(y\)个元素的值为数字\(A_{x-1,y}\)在\(\{A_{x-1,1},A_{x-1,2},A_{x-1, ...

  7. [XJOI NOI2015模拟题13] A 神奇的矩阵 【分块】

    题目链接:XJOI NOI2015-13 A 题目分析 首先,题目定义的这种矩阵有一个神奇的性质,第 4 行与第 2 行相同,于是第 5 行也就与第 3 行相同,后面的也是一样. 因此矩阵可以看做只有 ...

  8. 数学&模拟:随机化-矩阵随机化

    BZOJ2396 给出三个行数和列数均为N的矩阵A.B.C,判断A*B=C是否成立 随机生成一个N乘1的矩阵R 然后判断A*B*R是否等于C*R,而前者相当于A*(B*R) 与后者一样都可以在O(N2 ...

  9. D.Starry的神奇魔法(矩阵快速幂)

    /*D: Starry的神奇魔法 Time Limit: 1 s      Memory Limit: 128 MB Submit My Status Problem Description     ...

随机推荐

  1. opencv使用 findContours

    http://www.jb51.net/article/132217.htm https://www.jianshu.com/p/4bc3349b4611 https://blog.csdn.net/ ...

  2. python_60_装饰器3

    #嵌套函数 def foo(): print('in the foo') def bar(): print('in the bar') bar() #bar()#出错,无法在外边调用,bar函数的作用 ...

  3. 【6.20校内test】

    反正考的不是很好吧,赶脚炸了啊qwq 然后这两天一直在忙一些神奇的事情,所以没有整理完 手动@water_lift T1:大美江湖: [题目背景] 细雪飘落长街,枫叶红透又一年 不只为故友流连,其实我 ...

  4. spring中@Autowrite注解和@Resource的区别

    spring不但支持自己定义的@Autowired注解,还支持几个由JSR-250规范定义的注解,它们分别是@Resource.@PostConstruct以及@PreDestroy. @Resour ...

  5. zabbix监控系统时间的问题

    分类: 监控 2013-03-19 21:40:11   发现zabbix监控系统时间的一个问题!zabbix监控系统时间用的key是system.localtime,返回当前的系统时间,而配置tig ...

  6. JavaScript获取时间戳与时间戳转化

    第一种方法(精确到秒): var timestamp1 = Date.parse( new Date()); 第二种方法(精确到毫秒): var timestamp2 = ( new Date()). ...

  7. 同时启动多个tomcat的配置信息

    同时启动多个tomcat的配置信息 下面把该配置文件中各端口的含义说明下. <Server port="8005" shutdown="SHUTDOWN" ...

  8. shell数组脚本

    #!/bin/bash array=( ) ;i<${#array[*]};i++)) do echo ${array[i]} done 脚本2 #!/bin/bash array=( ) fo ...

  9. ubuntu怎样打开终端

    1.首先在桌面任意空白处,按CTRL+ALT+T 2.方法二

  10. HDU - 6514 Monitor(二维差分)

    题意 给定一个\(n×m\)的矩阵.(\(n×m <= 1e7\)). \(p\)次操作,每次可以在这个矩阵中覆盖一个矩形. \(q\)次询问,每次问一个矩形区域中,是否所有的点都被覆盖. 解析 ...