POJ-3280
Cheapest Palindrome
Time Limit: 2000MS Memory Limit: 65536K Total Submissions: 10301 Accepted: 4931 Description
Keeping track of all the cows can be a tricky task so Farmer John has installed a system to automate it. He has installed on each cow an electronic ID tag that the system will read as the cows pass by a scanner. Each ID tag's contents are currently a single string with length M (1 ≤ M ≤ 2,000) characters drawn from an alphabet of N (1 ≤ N ≤ 26) different symbols (namely, the lower-case roman alphabet).
Cows, being the mischievous creatures they are, sometimes try to spoof the system by walking backwards. While a cow whose ID is "abcba" would read the same no matter which direction the she walks, a cow with the ID "abcb" can potentially register as two different IDs ("abcb" and "bcba").
FJ would like to change the cows's ID tags so they read the same no matter which direction the cow walks by. For example, "abcb" can be changed by adding "a" at the end to form "abcba" so that the ID is palindromic (reads the same forwards and backwards). Some other ways to change the ID to be palindromic are include adding the three letters "bcb" to the begining to yield the ID "bcbabcb" or removing the letter "a" to yield the ID "bcb". One can add or remove characters at any location in the string yielding a string longer or shorter than the original string.
Unfortunately as the ID tags are electronic, each character insertion or deletion has a cost (0 ≤ cost ≤ 10,000) which varies depending on exactly which character value to be added or deleted. Given the content of a cow's ID tag and the cost of inserting or deleting each of the alphabet's characters, find the minimum cost to change the ID tag so it satisfies FJ's requirements. An empty ID tag is considered to satisfy the requirements of reading the same forward and backward. Only letters with associated costs can be added to a string.
Input
Line 1: Two space-separated integers: N and M
Line 2: This line contains exactly M characters which constitute the initial ID string
Lines 3..N+2: Each line contains three space-separated entities: a character of the input alphabet and two integers which are respectively the cost of adding and deleting that character.Output
Line 1: A single line with a single integer that is the minimum cost to change the given name tag.Sample Input
3 4
abcb
a 1000 1100
b 350 700
c 200 800Sample Output
900Hint
If we insert an "a" on the end to get "abcba", the cost would be 1000. If we delete the "a" on the beginning to get "bcb", the cost would be 1100. If we insert "bcb" at the begining of the string, the cost would be 350 + 200 + 350 = 900, which is the minimum.
题意:
有一个长度为m的字符串,其中有n个不同的字母,每个字母有自己的添加和删除的花费,求如何增删字母,可以使字符串变为回文串且花费最小。
对于一个字母来说,增和删的效果是一样的,所以可将它的花费看做增删的最小值。
设dp[i][[j]为i~j区间内字母变为回文的最小花费,则它只由dp[i+1][j]+cost[i]和dp[i][j-1]+cost[j]决定。
当s[i]==s[j]时,dp[i][j]=dp[i+1][j-1]。则dp[i][j]为两者之间的最小值。
AC代码:
//#include<bits/stdc++.h>
#include<iostream>
#include<cstring>
#include<cmath>
#include<algorithm>
using namespace std; const int MAXN=; int dp[MAXN][MAXN];
int cost[]; int cmp(int a,int b){
if(a>b)
a=b;
return a;
} int main(){
ios::sync_with_stdio(false);
int n,m;
string s;
char c;
while(cin>>n>>m&&n&&m){
cin>>s;
int x,y;
for(int i=;i<n;i++){
cin>>c>>x>>y;
cost[c-'a']=min(x,y);
}
memset(dp,,sizeof(dp));
for(int i=m-;i>=;i--){
for(int j=i+;j<m;j++){
dp[i][j]=cmp(dp[i+][j]+cost[s[i]-'a'],dp[i][j-]+cost[s[j]-'a']);
if(s[i]==s[j]){
dp[i][j]=cmp(dp[i+][j-],dp[i][j]);
}
}
}
cout<<dp[][m-]<<endl;
}
return ;
}
POJ-3280的更多相关文章
- poj 3280【区间dp】
poj 3280 题意:给定一个字符串和每个字符删去和增加的代价,求使字符串变成回文串操作所需的最小代价. 题解:哇!开心!终于亲自做对了!做完这两题这个就回了.uva10739 uva 10453 ...
- poj 3280 Cheapest Palindrome
链接:http://poj.org/problem?id=3280 思路:题目给出n种m个字符,每个字符都有对应的添加和删除的代价,求出构成最小回文串的代价 dp[i][j]代表区间i到区间j成为回文 ...
- POJ 3280 Cheapest Palindrome(DP 回文变形)
题目链接:http://poj.org/problem?id=3280 题目大意:给定一个字符串,可以删除增加,每个操作都有代价,求出将字符串转换成回文串的最小代价 Sample Input 3 4 ...
- poj 3280 Cheapest Palindrome ---(DP 回文串)
题目链接:http://poj.org/problem?id=3280 思路: dp[i][j] :=第i个字符到第j个字符之间形成回文串的最小费用. dp[i][j]=min(dp[i+1][j]+ ...
- POJ 3280 - Cheapest Palindrome - [区间DP]
题目链接:http://poj.org/problem?id=3280 Time Limit: 2000MS Memory Limit: 65536K Description Keeping trac ...
- POJ 3280 Cheapest Palindrome(区间DP求改成回文串的最小花费)
题目链接:http://poj.org/problem?id=3280 题目大意:给你一个字符串,你可以删除或者增加任意字符,对应有相应的花费,让你通过这些操作使得字符串变为回文串,求最小花费.解题思 ...
- (中等) POJ 3280 Cheapest Palindrome,DP。
Description Keeping track of all the cows can be a tricky task so Farmer John has installed a system ...
- DP:Cheapest Palindrome(POJ 3280)
价值最小回文字符串 题目大意:给你一个字符串,可以删除可以添加,并且每一次对一个字母的操作都带一个权,问你转成回文串最优操作数. 如果这一题我这样告诉你,你毫无疑问知道这一题是LD(Levenshti ...
- POJ 3280 Cheapest Palindrome(DP)
题目链接 被以前的题目惯性思维了,此题dp[i][j],代表i到j这一段变成回文的最小花费.我觉得挺难的理解的. #include <cstdio> #include <cstrin ...
- POJ 3280 Cheapest Palindrome(DP)
题目链接 题意 :给你一个字符串,让你删除或添加某些字母让这个字符串变成回文串,删除或添加某个字母要付出相应的代价,问你变成回文所需要的最小的代价是多少. 思路 :DP[i][j]代表的是 i 到 j ...
随机推荐
- CF459C Pashmak and Buses 打印全排列
这题假设将终于的结果竖着看,每一列构成的数能够看成是k进制的数.一共同拥有d列,随意两列都不同样,所以这就是一个d位k进制数全排列的问题,一共同拥有k ^ d个排列.假设k ^ d < n,则打 ...
- Project Euler:Problem 41 Pandigital prime
We shall say that an n-digit number is pandigital if it makes use of all the digits 1 to n exactly o ...
- js中scrollLeft、scrollWidth、offsetTop等相关位置属性的理解(转)
1.常见的事件位置属性 e.pageX——相对整个页面的坐标 注意:IE6.IE7.IE8无该属性 e.layerX——相对当前坐标系的border左上角开始的坐标 注意:在opera.IE6.IE7 ...
- EasyPlayerPro Windows播放器电子放大/局部放大播放功能实现
背景描述 在视频监控软件中,我们看到很多的软件都有电子放大功能, 按住鼠标左键不放,框选一个区域,再松开鼠标左键,即对选中的区域进行放大显示, 且可以重复该操作,逐步放大所需显示的区域, 有没有觉得, ...
- WebService 简单应用
Web服务全称:XML Web Service,是一种可编程的应用程序逻辑组件,它可以在Internet或企业网的Web应用程序之间共享.Web服务被设计成能够通过Internet与其它应用程序之间直 ...
- DSP/BIOS使用之初窥门径——滴答时钟及烧写Flash
操作平台和环境 DSP型号:TMS320C6713 仿真器:XDS510PLUS Flash型号:AM29LV800BT或AM29LV800BT都试过(一般接口一样,区别不大) RAM型号:MT48L ...
- SAP数据表相关
[转]SAP 数据表相关信息 今天用到了根据字段取数据元素描述,以前做过忘啦,在谢兄的帮助下搞定,把他的总结粘出来记住. 存储域(Domain)信息的表为DD01L:存储数据元素(Data Eleme ...
- SlopeOne推荐算法
Slope One 算法 是一种基于评分的预测算法, 本质上也是一种基于项目的算法.与一般的基于项目的算法不同, 该算法不计算项目之间的相似度, 而是用一种简单的线性回归模型进行预测(可 ...
- Unity中几种简单的相机跟随
#unity中相机追随 固定相机跟随,这种相机有一个参考对象,它会保持与该参考对象固定的位置,跟随改参考对象发生移动 using UnityEngine; using System.Collectio ...
- iOS 开发实践之 Auto Layout
原:http://xuexuefeng.com/autolayout/?utm_source=tuicool 本文是博主 iOS 开发实践系列中的一篇,主要讲述 iOS 中 Auto Layout(自 ...