For a Maximum Segment Tree, which each node has an extra value max to store the maximum value in this node's interval.

Implement a modify function with three parameterrootindex and value to change the node's value with[start, end] = [index, index] to the new given value. Make sure after this change, every node in segment tree still has the max attribute with the correct value.

Example

For segment tree:

                      [1, 4, max=3]
/ \
[1, 2, max=2] [3, 4, max=3]
/ \ / \
[1, 1, max=2], [2, 2, max=1], [3, 3, max=0], [4, 4, max=3]

if call modify(root, 2, 4), we can get:

                      [1, 4, max=4]
/ \
[1, 2, max=4] [3, 4, max=3]
/ \ / \
[1, 1, max=2], [2, 2, max=4], [3, 3, max=0], [4, 4, max=3]

or call modify(root, 4, 0), we can get:

                      [1, 4, max=2]
/ \
[1, 2, max=2] [3, 4, max=0]
/ \ / \
[1, 1, max=2], [2, 2, max=1], [3, 3, max=0], [4, 4, max=0]
 
 /**
* Definition of SegmentTreeNode:
* public class SegmentTreeNode {
* public int start, end, max;
* public SegmentTreeNode left, right;
* public SegmentTreeNode(int start, int end, int max) {
* this.start = start;
* this.end = end;
* this.max = max
* this.left = this.right = null;
* }
* }
*/
public class Solution {
/**
*@param root, index, value: The root of segment tree and
*@ change the node's value with [index, index] to the new given value
*@return: void
*/
public void modify(SegmentTreeNode root, int index, int value) {
changeAndUpdate(root, index, value);
} private void changeAndUpdate(SegmentTreeNode root, int index, int value) {
if (root.start == index && root.end == index) {
root.max = value;
return;
} int mid = (root.start + root.end) / ;
if (mid >= index) {
change(root.left, index, value);
} else {
change(root.right, index, value);
}
root.max = Math.max(root.left.max, root.right.max);
}
}

Segment Tree Modify的更多相关文章

  1. Lintcode: Segment Tree Modify

    For a Maximum Segment Tree, which each node has an extra value max to store the maximum value in thi ...

  2. 203. Segment Tree Modify

    最后更新 二刷 08-Jan-2017 利用线段树来更改,找到更改的NODE,然后更改那个brach上的所有max值. 首先确定recursion的终止条件 然后通过判断大小来找方向 找到NODE之后 ...

  3. 『线段树 Segment Tree』

    更新了基础部分 更新了\(lazytag\)标记的讲解 线段树 Segment Tree 今天来讲一下经典的线段树. 线段树是一种二叉搜索树,与区间树相似,它将一个区间划分成一些单元区间,每个单元区间 ...

  4. 关于线段树的感悟(Segment Tree)

    线段树的感悟 : 学过的东西一定要多回头看看,不然真的会忘个干干净净. 线段树的 Introduction : English Name : Segment Tree 顾名思义 : 该数据结构由两个重 ...

  5. BestCoder#16 A-Revenge of Segment Tree

    Revenge of Segment Tree Problem Description In computer science, a segment tree is a tree data struc ...

  6. [LintCode] Segment Tree Build II 建立线段树之二

    The structure of Segment Tree is a binary tree which each node has two attributes startand end denot ...

  7. [LintCode] Segment Tree Build 建立线段树

    The structure of Segment Tree is a binary tree which each node has two attributes start and end deno ...

  8. Segment Tree Query I & II

    Segment Tree Query I For an integer array (index from 0 to n-1, where n is the size of this array), ...

  9. Segment Tree Build I & II

    Segment Tree Build I The structure of Segment Tree is a binary tree which each node has two attribut ...

随机推荐

  1. 常用的Java 架包(jar)的用途

    前言:如果需要在项目中引入jar包,可以采用maven,配置方式在 http://mvnrepository.com 查询  slf4j-api 简介:slf4j并不是一种具体的日志系统,而是一个用户 ...

  2. str和repr的

    尽管str(),repr()和``运算在特性和功能方面都非常相似,事实上repr()和``做的是完全一样的事情,它们返回的是一个对象的“官方”字符串表示,也就是说绝大多数情况下可以通过求值运算(使用内 ...

  3. BZOJ-4424 &&CodeForces-19E Fairy DP+dfs (Link-Cut-Tree可A)

    Va爷的胡策题T2 E. Fairy time limit per test1.5 seconds memory limit per test256 megabytes inputstandard i ...

  4. BZOJ4590 自动刷题机

    Description 曾经发明了信号增幅仪的发明家SHTSC又公开了他的新发明:自动刷题机--一种可以自动AC题目的神秘装置.自动 刷题机刷题的方式非常简单:首先会瞬间得出题目的正确做法,然后开始写 ...

  5. Erlang练习-UDP

    贴一下代码,例子是从别人那里直接抄来的: -module(myudp). -export([start/0, client/1]). %% Server start() -> spawn(fun ...

  6. 清除TFS版本控制信息

    http://blog.csdn.net/feihu_guest/article/details/8442434 How to permanently remove TFS Source Contro ...

  7. 代码重构-3 用Tuple代替 out与ref

    返回单一值是良好的编程习惯 原代码: public LotteryViewModel ValidateLottery(LotteryBaseData baseData, int authTime, o ...

  8. MongoDB之bson的介绍

    MongoDB之bson的介绍 1. 什么是bson BSON是一种类json的一种二进制形式的存储格式,简称Binary JSON,它和JSON一样,支持内嵌的文档对象和数组对象,但是BSON有JS ...

  9. Protocol Buffer技术详解(数据编码)

    Protocol Buffer技术详解(数据编码) 之前已经发了三篇有关Protocol Buffer的技术博客,其中第一篇介绍了Protocol Buffer的语言规范,而后两篇则分别基于C++和J ...

  10. 快速tab应用

    ZCTabNav-master https://github.com/zcsoft/ZCTabNav 层次构架清楚,很适合快速,导入