http://acm.csu.edu.cn:20080/csuoj/problemset/problem?pid=2281

Description

An arithmetic progression is a sequence of numbers a1, a2, ..., ak where the difference of consecutive members ai + 1 − ai is a constant 1 ≤ i ≤ k − 1 . For example, the sequence 5, 8, 11, 14, 17 is an arithmetic progression of length 5 with the common difference 3.

In this problem, you are requested to find the longest arithmetic progression which can be formed selecting some numbers from a given set of numbers. For example, if the given set of numbers is {0, 1, 3, 5, 6, 9}, you can form arithmetic progressions such as 0, 3, 6, 9 with the common difference 3, or 9, 5, 1 with the common difference -4. In this case, the progressions 0, 3, 6, 9 and 9, 6, 3, 0 are the longest.

Input

The input consists of a single test case of the following format.

n
v1 v2 ... vn

n is the number of elements of the set, which is an integer satisfying 2 ≤ n ≤ 5000 . Each vi(1 ≤ i ≤ n) is an element of the set,which is an integer satisfying 0 ≤ vi ≤ 109.vi's are all different, i.e.,vi ≠ vj if i ≠ j

Output

Output the length of the longest arithmetic progressions which can be formed selecting some numbers from the given set of numbers.

Sample Input

6
0 1 3 5 6 9

Sample Output

4
题意:求出序列从小到大排序之后能形成的最长等差数列的长度。
题解:dp,dp[i][j]表示i和j作为前两项时的数列长度,如果先枚举第一项(O(N)),然后第二项如果和第三项在第一项的同一侧的话就是(O(N^2)),整体复杂度是(O(N^3)),难以接受,而如果先枚举第二项,然后第一项和第三项在第二项两侧,根据a[j]+a[k]=2*a[i]可以将复杂度降为O(N^2)
 #include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int a[],dp[][];
int main(){
int n;
scanf("%d",&n);
for(int i=;i<=n;i++)scanf("%d",&a[i]);
for(int i=;i<=n;i++){
for(int j=i;j<=n;j++){
if(i!=j)dp[i][j]=;
else dp[i][j]=;
}
}
sort(a+,a++n);
int ans=;
for(int i=n-;i>=;i--){
int j=i-;
int k=i+;
while(j>=&&k<=n){
if(a[j]+a[k]==*a[i]){dp[j][i]=dp[i][k]+;ans=max(ans,dp[j][i]);k++;j--;}
else if(a[j]+a[k]<*a[i]){k++;}
else {j--;}
}
}
cout<<ans<<endl;
return ;
}

一道dp[不太好写]的更多相关文章

  1. dp表模型-如何写出for循环动态规划

    题目很肤浅.. 但是这件事我们要做.. 那么有一种方法叫做刷表法.. 当你发现这个问题具有最优子结构,重叠子问题时 那么这是一个dp问题是使用本方法的前提 画出该dp状态所对应的矩阵 画出转移关系线. ...

  2. 值得一做》关于一道DP+SPFA的题 BZOJ1003 (BZOJ第一页计划) (normal-)

    这是一道数据范围和评测时间水的可怕的题,只是思路有点难想,BUT假如你的思路清晰,完全了解怎么该做,那就算你写一个反LLL和反SLE都能A,如此水的一道题,你不心动吗? 下面贴出题目 Descript ...

  3. Kickstart Round D 2017 problem A sightseeing 一道DP

    这是现场完整做出来的唯一一道题Orz..而且还调了很久的bug.还是太弱了. Problem When you travel, you like to spend time sightseeing i ...

  4. 62. Unique Paths(中等,我自己解出的第一道 DP 题^^)

    A robot is located at the top-left corner of a m x n grid (marked 'Start' in the diagram below). The ...

  5. 一道DP

    也是校赛学长出的一道题~想穿了很简单..但我还是听了学长讲才明白. 观察力有待提高. Problem D: YaoBIG’s extra homeworkTime LimitMemory Limit1 ...

  6. nyoj16矩形嵌套(第一道dp关于dag的题目)

    http://acm.nyist.net/JudgeOnline/problem.php?pid=16 题意:有n个矩形,每个矩形可以用a,b来描述,表示长和宽.矩形X(a,b)可以嵌套在矩形Y(c, ...

  7. 2018微软实习笔试一道dp题目总结

    题意大概是说在一维数轴上起点和终点的距离是d,现在我们要从起点走到终点.每走一个单位长度消耗一个单位能量,初始时有K单位能量.同时在起点和终点之间分布一些加油站a1,a2,...an,给你加油站数量. ...

  8. python中一行字符串太多写不下时怎么写

    ‘123456789‘ 见此博客    https://www.cnblogs.com/wanderingzj/p/5244451.html str1=('123 '455' '789') 这样的话, ...

  9. dp 单调性优化总结

    对于单调性优化其实更多的是观察dp的状态转移式子的单调性 进而用优先队列 单调队列 二分查找什么的找到最优决策 使时间更优. 对于这道题就是单调性优化的很好的例子 首先打一个暴力再说. f[i][j] ...

随机推荐

  1. Java Web(四) 过滤器Filter

    Filter概述 Filter意为滤镜或者过滤器,用于在Servlet之外对request或者response进行修改.Filter提出了过滤链的概念.一个FilterChain包括多个Filter. ...

  2. unity实现用鼠标右键控制摄像机视角上下左右移动

    using System;using System.Collections.Generic;using UnityEngine;public class ViewControl{ enum Rotat ...

  3. day7-python打开文件方式

    文件操作 对文件操作流程 打开文件,得到文件句柄并赋值给一个变量 通过句柄对文件进行操作 关闭文件 基本操作 import codecs #主要用来解决乱码问题 f = codecs.open('1. ...

  4. day02 运算符和编码

    今日所学 主要是运算符和编码的初认识, 1   还有比较运算 ==,!=,<>,>,<,>=,<=等 2  .  赋值运算 =,+=,-=等 还有今天的难点逻辑运算 ...

  5. C++ STL string对象操作汇总

    string对象 C语言只提供了一个char类型用来处理字符,而对于字符串,只能通过字符串数组来处理,显得十分不便.C++STL提供了string基本字符系列容器来处理字符串,可以把string理解为 ...

  6. 3.8 C++继承机制下的析构函数

    参考:http://www.weixueyuan.net/view/6365.html 总结: 构造函数的执行顺序是按照继承顺序自顶向下的,从基类到派生类,而析构函数的执行顺序是按照继承顺序自下向上, ...

  7. 第二节 java流程控制(判断结构+选择结构)

    Java的判断结构: 1.if(条件表达式){ 执行语句 }: 2.if(条件表达式){ 执行语句 }else{ 执行语句 } 3. if(条件表达式){ 执行语句 }else if(条件表达式){ ...

  8. activiti 插件安装,以及初始化配置

    1.安装插件 2.添加pom 3.配置activiti.cfg.xml 4.绘制业务流程图 MyProcess.bpmn 5.加载activiti数据表 6.创建流程 1.安装eclipse acti ...

  9. Tap 模拟手势点击坐标

    前言:有时候元素怎么都定位不到,没办法就只能坐标定位了,不过这个坐标定位不准确,换个手机就可能定位不到了,这是一个下下策的定位方式. tap用法 1.tap是模拟手指点击页面上元素语法有两个参数,第一 ...

  10. shelly - HYMN TO INTELLECTUAL BEAUTY

    HYMN TO INTELLECTUAL BEAUTY III No voice from some sublimer world hath ever ⁠To sage or poet these r ...