原题链接在这里:https://leetcode.com/problems/connecting-cities-with-minimum-cost/

题目:

There are N cities numbered from 1 to N.

You are given connections, where each connections[i] = [city1, city2, cost] represents the cost to connect city1 and city2together.  (A connection is bidirectional: connecting city1 and city2 is the same as connecting city2 and city1.)

Return the minimum cost so that for every pair of cities, there exists a path of connections (possibly of length 1) that connects those two cities together.  The cost is the sum of the connection costs used. If the task is impossible, return -1.

Example 1:

Input: N = 3, connections = [[1,2,5],[1,3,6],[2,3,1]]
Output: 6
Explanation:
Choosing any 2 edges will connect all cities so we choose the minimum 2.

Example 2:

Input: N = 4, connections = [[1,2,3],[3,4,4]]
Output: -1
Explanation:
There is no way to connect all cities even if all edges are used.

Note:

  1. 1 <= N <= 10000
  2. 1 <= connections.length <= 10000
  3. 1 <= connections[i][0], connections[i][1] <= N
  4. 0 <= connections[i][2] <= 10^5
  5. connections[i][0] != connections[i][1]

题解:

Try to connect cities with minimum cost, then find small cost edge first, if two cities connected by the edge do no have same ancestor, then union them.

When number of unions equal to 1, all cities are connected.

Time Complexity: O(mlogm + mlogN). sort takes O(mlogm). find takes O(logN). With path compression and unino by weight, amatorize O(1).

Space: O(N).

AC Java:

 class Solution {
public int minimumCost(int N, int[][] connections) {
Arrays.sort(connections, (a, b) -> a[2]-b[2]); int res = 0;
UF uf = new UF(N);
for(int [] connect : connections){
if(uf.find(connect[0]) != uf.find(connect[1])){
uf.union(connect[0], connect[1]);
res += connect[2];
} if(uf.count == 1){
return res;
}
} return -1;
}
} class UF{
int [] parent;
int [] size;
int count; public UF(int n){
parent = new int[n+1];
size = new int[n+1];
for(int i = 0; i<=n; i++){
parent[i] = i;
size[i] = 1;
} this.count = n;
} public int find(int i){
if(i != parent[i]){
parent[i] = find(parent[i]);
} return parent[i];
} public void union(int p, int q){
int i = find(p);
int j = find(q);
if(size[i] > size[j]){
parent[j] = i;
size[i] += size[j];
}else{
parent[i] = j;
size[j] += size[i];
} this.count--;
}
}

LeetCode 1135. Connecting Cities With Minimum Cost的更多相关文章

  1. 【LeetCode】1135. Connecting Cities With Minimum Cost 解题报告 (C++)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客:http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 Kruskal算法 日期 题目地址:https://l ...

  2. 【LeetCode】983. 最低票价 Minimum Cost For Tickets(C++ & Python)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客:http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 动态规划 日期 题目地址:https://leetco ...

  3. [LeetCode] Minimum Cost to Merge Stones 混合石子的最小花费

    There are N piles of stones arranged in a row.  The i-th pile has stones[i] stones. A move consists ...

  4. Leetcode之动态规划(DP)专题-详解983. 最低票价(Minimum Cost For Tickets)

    Leetcode之动态规划(DP)专题-983. 最低票价(Minimum Cost For Tickets) 在一个火车旅行很受欢迎的国度,你提前一年计划了一些火车旅行.在接下来的一年里,你要旅行的 ...

  5. LeetCode 1000. Minimum Cost to Merge Stones

    原题链接在这里:https://leetcode.com/problems/minimum-cost-to-merge-stones/ 题目: There are N piles of stones ...

  6. LeetCode 1130. Minimum Cost Tree From Leaf Values

    原题链接在这里:https://leetcode.com/problems/minimum-cost-tree-from-leaf-values/ 题目: Given an array arr of ...

  7. LeetCode 983. Minimum Cost For Tickets

    原题链接在这里:https://leetcode.com/problems/minimum-cost-for-tickets/ 题目: In a country popular for train t ...

  8. 【LeetCode】1167. Minimum Cost to Connect Sticks 解题报告 (C++)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客:http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 小根堆 日期 题目地址:https://leetcod ...

  9. 【leetcode】1217. Minimum Cost to Move Chips to The Same Position

    We have n chips, where the position of the ith chip is position[i]. We need to move all the chips to ...

随机推荐

  1. 全能中间件v19.5.7 正式版发布

    v19.5.7 更新=========================1.新增 支持更多微信公众号API.2.优化 AccessToken 刷新机制.3.修复 微信公众号“消息加解密方式”为“安全模式 ...

  2. K8s-yaml的使用及命令

    YAML配置文件管理对象 对象管理: # 创建deployment资源 kubectl create -f nginx-deployment.yaml # 查看deployment kubectl g ...

  3. 【1】【leetcode-72 动态规划】 编辑距离

    (没思路,很典型,重要) 给定两个单词 word1 和 word2,计算出将 word1 转换成 word2 所使用的最少操作数 . 你可以对一个单词进行如下三种操作: 插入一个字符 删除一个字符 替 ...

  4. linux初学者-编辑文件工具vim

      "vim"是linux中非常强大,应用非常广的编辑方式.下面介绍一些"vim"的基本用法.以"/etc/passwd"为例. 1.vim ...

  5. 精通Spring Boot

    原 精通Spring Boot—— 第二十一篇:Spring Social OAuth 登录简介 1.什么是OAuth OAuth官网介绍是这样的: An open protocol to allow ...

  6. easy ui 弹框叠加问题

    1.框架用的是.net MVC,Index页面如下所示: @{ Layout = "~/Views/Shared/_CustomerLayout.cshtml"; ViewBag. ...

  7. centos8安装chromium浏览器

    1/yum install epel* [root@localhost framework]# yum list epl* Last metadata expiration check: 0:57:4 ...

  8. LocalDateTime&LocalDate&LocalTime

    DateTimeFormatter df = DateTimeFormatter.ofPattern("yyyy-MM-dd HH:mm:ss");LocalDateTime ti ...

  9. iOS - 架构模式 - 解密 MVC、MVP、MVVM、VIPER架构

    在 iOS 中使用 MVC 架构感觉很奇怪? 迁移到MVVM架构又怀有疑虑?听说过 VIPER 又不确定是否真的值得切换? 相信你会找到以上问题的答案,如果没找到请在评论中指出. 你将要整理出你在 i ...

  10. 【转载】C#中List集合中Last和LastOrDefault方法的差别

    在C#的List集合操作中,Last方法和LastOrDefault方法都会用来查找集合中最后一个符合条件的元素对象,但Last和LastOrDefault方法还是有差别的,建议使用LastOrDef ...