原题链接在这里:https://leetcode.com/problems/connecting-cities-with-minimum-cost/

题目:

There are N cities numbered from 1 to N.

You are given connections, where each connections[i] = [city1, city2, cost] represents the cost to connect city1 and city2together.  (A connection is bidirectional: connecting city1 and city2 is the same as connecting city2 and city1.)

Return the minimum cost so that for every pair of cities, there exists a path of connections (possibly of length 1) that connects those two cities together.  The cost is the sum of the connection costs used. If the task is impossible, return -1.

Example 1:

Input: N = 3, connections = [[1,2,5],[1,3,6],[2,3,1]]
Output: 6
Explanation:
Choosing any 2 edges will connect all cities so we choose the minimum 2.

Example 2:

Input: N = 4, connections = [[1,2,3],[3,4,4]]
Output: -1
Explanation:
There is no way to connect all cities even if all edges are used.

Note:

  1. 1 <= N <= 10000
  2. 1 <= connections.length <= 10000
  3. 1 <= connections[i][0], connections[i][1] <= N
  4. 0 <= connections[i][2] <= 10^5
  5. connections[i][0] != connections[i][1]

题解:

Try to connect cities with minimum cost, then find small cost edge first, if two cities connected by the edge do no have same ancestor, then union them.

When number of unions equal to 1, all cities are connected.

Time Complexity: O(mlogm + mlogN). sort takes O(mlogm). find takes O(logN). With path compression and unino by weight, amatorize O(1).

Space: O(N).

AC Java:

 class Solution {
public int minimumCost(int N, int[][] connections) {
Arrays.sort(connections, (a, b) -> a[2]-b[2]); int res = 0;
UF uf = new UF(N);
for(int [] connect : connections){
if(uf.find(connect[0]) != uf.find(connect[1])){
uf.union(connect[0], connect[1]);
res += connect[2];
} if(uf.count == 1){
return res;
}
} return -1;
}
} class UF{
int [] parent;
int [] size;
int count; public UF(int n){
parent = new int[n+1];
size = new int[n+1];
for(int i = 0; i<=n; i++){
parent[i] = i;
size[i] = 1;
} this.count = n;
} public int find(int i){
if(i != parent[i]){
parent[i] = find(parent[i]);
} return parent[i];
} public void union(int p, int q){
int i = find(p);
int j = find(q);
if(size[i] > size[j]){
parent[j] = i;
size[i] += size[j];
}else{
parent[i] = j;
size[j] += size[i];
} this.count--;
}
}

LeetCode 1135. Connecting Cities With Minimum Cost的更多相关文章

  1. 【LeetCode】1135. Connecting Cities With Minimum Cost 解题报告 (C++)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客:http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 Kruskal算法 日期 题目地址:https://l ...

  2. 【LeetCode】983. 最低票价 Minimum Cost For Tickets(C++ & Python)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客:http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 动态规划 日期 题目地址:https://leetco ...

  3. [LeetCode] Minimum Cost to Merge Stones 混合石子的最小花费

    There are N piles of stones arranged in a row.  The i-th pile has stones[i] stones. A move consists ...

  4. Leetcode之动态规划(DP)专题-详解983. 最低票价(Minimum Cost For Tickets)

    Leetcode之动态规划(DP)专题-983. 最低票价(Minimum Cost For Tickets) 在一个火车旅行很受欢迎的国度,你提前一年计划了一些火车旅行.在接下来的一年里,你要旅行的 ...

  5. LeetCode 1000. Minimum Cost to Merge Stones

    原题链接在这里:https://leetcode.com/problems/minimum-cost-to-merge-stones/ 题目: There are N piles of stones ...

  6. LeetCode 1130. Minimum Cost Tree From Leaf Values

    原题链接在这里:https://leetcode.com/problems/minimum-cost-tree-from-leaf-values/ 题目: Given an array arr of ...

  7. LeetCode 983. Minimum Cost For Tickets

    原题链接在这里:https://leetcode.com/problems/minimum-cost-for-tickets/ 题目: In a country popular for train t ...

  8. 【LeetCode】1167. Minimum Cost to Connect Sticks 解题报告 (C++)

    作者: 负雪明烛 id: fuxuemingzhu 个人博客:http://fuxuemingzhu.cn/ 目录 题目描述 题目大意 解题方法 小根堆 日期 题目地址:https://leetcod ...

  9. 【leetcode】1217. Minimum Cost to Move Chips to The Same Position

    We have n chips, where the position of the ith chip is position[i]. We need to move all the chips to ...

随机推荐

  1. 三、SpringBoot整合Thymeleaf视图

    目录 3.1 Thymeleaf视图介绍 3.2 创建SpringBoot项目 3.2 配置Thymeleaf 3.3 编写Demo 3.4 小结 3.1 Thymeleaf视图介绍 先看下官网的介绍 ...

  2. go包管理

    摘自: http://blueskykong.com/2019/02/18/go-dep-1/ https://www.cnblogs.com/apocelipes/p/10295096.html#v ...

  3. 【LEETCODE】63、数组分类,hard级别,题目:85、4、84

    package y2019.Algorithm.array.hard; /** * @ProjectName: cutter-point * @Package: y2019.Algorithm.arr ...

  4. Java-手动搭建SSH(maven版)

    创建maven项目 把maven项目变为动态网站,步骤如下: 项目结构图如下: 开始搭建spring+springmvc+Hibernate项目 环境版本就不多说了,直接贴出pom.xml文件 < ...

  5. Quartz时间配置(周期任务)

     序号 说明  是否必填  允许填写的值 允许的通配符  1  秒  是  0-59    , - * /  2  分  是  0-59   , - * /  3 小时  是  0-23   , - ...

  6. IQueryable,IEnumerable,IList区别

    IQueryable和IEnumerable都是延时执行(Deferred Execution)的,而IList是即时执行(Eager Execution)IQueryable和IEnumerable ...

  7. selenium自动化测试框架之PO设计模式

    面向对象的特性:封装.继承.多态.在自动化中一样适用,Selenium自动化测试中有一个名字常常被提及PageObject(思想与面向对象的特性相同),通过PO模式可以大大提高测试用例的维护效率. 传 ...

  8. poi读取excel的列和删除列

    (各自根据具体的poi版本进行相应的替换即可) package com.br.loan.strategy.common.utils; import lombok.extern.slf4j.Slf4j; ...

  9. gitlab中clone项目时,IP地址是一串数字

    问题:docker安装后,clone显示ip是一串地址 解决(如果是非docker启动的,自然就是进入gitlab下): 1.进入docker 后台: docker exec -it gitlab / ...

  10. .NET Framework 项目多环境下配置文件web.config

    解决jenkins自动构建发布的问题,统一从git/svn库中获取项目文件,根据不同配置编译发布到多个运行环境中. 转自:https://www.cnblogs.com/hugogoos/p/6426 ...