传送门


一道裸的错排问题

错排问题

百度百科上这样

就是对于一个排列,每一个数都不在正确的位置上的方案数。n 个元素的错排数记为 D(n)。

公式

D(n)=(n−1)∗(D(n−2)+D(n−1))

推出公式(感性)

对于第n个数,放在k位置上。

而第k个数有两种情况:

  • 当第k个数放到n位置时,相当于把k和n交换了位置,对剩下的n-2个数没有任何影响,所以方案数为D(n-2)。
  • 当第k个数不放到n位置时,相当于k由原来的不能放在k位置变成了不能放在n位置,对k和剩下的n-2个数即这n-1个数都没有影响,所以方案数为D(n-1)。

所以对于每个k,都有D(n-1)+D(n-2)种排法。而k有n-1种选择,所以要乘上n-1,最终得出公式D(n)=(n-1)*(D(n-1)+D(n-2))。

其中,D(1)初始化为0,D(2)初始化为1。

AC代码

 #include<iostream>
using namespace std;
long long ans[];
int main()
{
int n;
cin>>n;
ans[]=;
ans[]=;
for(int i=;i<=n;i++) ans[i]=(i-)*(ans[i-]+ans[i-]);
cout<<ans[n];
return ;
}

错排问题 && 洛谷 P1595 信封问题的更多相关文章

  1. 洛谷P1595 信封问题 题解 错排问题

    作者:zifeiy 标签:排列组合,错排问题 题目链接:https://www.luogu.org/problem/P1595 题目描述:某人写了n封信和n个信封,如果所有的信都装错了信封.求所有信都 ...

  2. 洛谷——P1595 信封问题

    P1595 信封问题 题目描述 某人写了n封信和n个信封,如果所有的信都装错了信封.求所有信都装错信封共有多少种不同情况. 输入输出格式 输入格式: 一个信封数n(n<=20) 输出格式: 一个 ...

  3. 洛谷P1595 信封问题

    题目描述 某人写了n封信和n个信封,如果所有的信都装错了信封.求所有信都装错信封共有多少种不同情况. 输入输出格式 输入格式: 一个信封数n 输出格式: 一个整数,代表有多少种情况. 输入输出样例 输 ...

  4. 洛谷 P1595 信封问题

    题目描述 某人写了n封信和n个信封,如果所有的信都装错了信封.求所有信都装错信封共有多少种不同情况. 输入输出格式 输入格式: 一个信封数n 输出格式: 一个整数,代表有多少种情况. 输入输出样例 输 ...

  5. 洛谷 P3182 [HAOI2016]放棋子(高精度,错排问题)

    传送门 解题思路 不会错排问题的请移步——错排问题 && 洛谷 P1595 信封问题 这一道题其实就是求对于每一行的每一个棋子都放在没有障碍的地方的方案数. 因为障碍是每行.每列只有一 ...

  6. 洛谷P1056 排座椅

    洛谷P1056 排座椅 洛谷传送门 题目描述 上课的时候总会有一些同学和前后左右的人交头接耳,这是令小学班主任十分头疼的一件事情.不过,班主任小雪发现了一些有趣的现象,当同学们的座次确定下来之后,只有 ...

  7. 洛谷 P3182 [HAOI2016]放棋子(错排问题)

    题面 luogu 题解 裸的错排问题 错排问题 百度百科:\(n\)个有序的元素应有\(n!\)个不同的排列,如若一个排列使得所有的元素不在原来的位置上,则称这个排列为错排:有的叫重排.如,1 2的错 ...

  8. 洛谷——P4071 [SDOI2016]排列计数(错排+组合数学)

    P4071 [SDOI2016]排列计数 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳定的.序列 ...

  9. 洛谷 P1056 排座椅 桶排序

    桶排序大法好! 每次一看到这种范围小的题,本萌新就想用桶排. 因为题目中的m,n都小于1000,我们就可以定义两个1000的数组,表示每一行或每一列可以隔开几对讲话的童鞋. 然后再定义两个1000的数 ...

随机推荐

  1. sql优化-派生表与inner-join

    首先来说明一下派生表? 外部的表查询的结果集是从子查询中生成的.如下形式: select ... from (select ....) dt 如上形式中括号中的查询的结果作为外面select语句的查询 ...

  2. iOS---如何获取手机的本地照片和相册

    __weak ViewController *weakSelf = self; dispatch_async(dispatch_get_global_queue(DISPATCH_QUEUE_PRIO ...

  3. spring 知识结构

  4. 【rust】rust安装,运行第一个Rust 程序 (1)

    安装 Rust 在 Unix 类系统如 Linux 和 macOS 上,打开终端并输入: curl https://sh.rustup.rs -sSf | sh 回车后安装过程出现如下显示: info ...

  5. 七牛云对象存储kodo使用体验

    在这里,我使用了七牛云的对象存储Kodo,和阿里云的OSS,还有腾讯云的COS是同样的产品 oss相关术语 包依赖关系解决 unrecognized import path "golang. ...

  6. ES6 模板语法和分隔符

    let user = 'Barret'; console.log(`Hi ${user}!`); // Hi Barret!

  7. qbzt day6 上午

    还是合并石子,但是这次可以任意两个合并,并且求最大异或和 f[s]表示把s所对应的的石子合并为一堆的最小代价 最后求f[2^n-1] 怎么转移? 最后一次也是把两堆合并成一堆,但是会有很多情况,可以枚 ...

  8. master-slave replication

    redis save 备份 恢复 root@ubuntu:/etc/init.d# find / -name dump.rdb |xargs ls -alt redis-cli save cp /va ...

  9. 文件格式-CVS:CVS

    ylbtech-文件格式-CVS:CVS 逗号分隔值(Comma-Separated Values,CSV,有时也称为字符分隔值,因为分隔字符也可以不是逗号),其文件以纯文本形式存储表格数据(数字和文 ...

  10. 012-elasticsearch5.4.3【五】-搜索API【一】搜索匹配所有matchAllQuery、全文查询[matchQuery、multiMatchQuery、commonTermsQuery、queryStringQuery、simpleQueryStringQuery]

    一.概述 查询所使用的 QueryBuilders来源于以下 import static org.elasticsearch.index.query.QueryBuilders.*; 请注意,您可以使 ...