传送门


一道裸的错排问题

错排问题

百度百科上这样

就是对于一个排列,每一个数都不在正确的位置上的方案数。n 个元素的错排数记为 D(n)。

公式

D(n)=(n−1)∗(D(n−2)+D(n−1))

推出公式(感性)

对于第n个数,放在k位置上。

而第k个数有两种情况:

  • 当第k个数放到n位置时,相当于把k和n交换了位置,对剩下的n-2个数没有任何影响,所以方案数为D(n-2)。
  • 当第k个数不放到n位置时,相当于k由原来的不能放在k位置变成了不能放在n位置,对k和剩下的n-2个数即这n-1个数都没有影响,所以方案数为D(n-1)。

所以对于每个k,都有D(n-1)+D(n-2)种排法。而k有n-1种选择,所以要乘上n-1,最终得出公式D(n)=(n-1)*(D(n-1)+D(n-2))。

其中,D(1)初始化为0,D(2)初始化为1。

AC代码

 #include<iostream>
using namespace std;
long long ans[];
int main()
{
int n;
cin>>n;
ans[]=;
ans[]=;
for(int i=;i<=n;i++) ans[i]=(i-)*(ans[i-]+ans[i-]);
cout<<ans[n];
return ;
}

错排问题 && 洛谷 P1595 信封问题的更多相关文章

  1. 洛谷P1595 信封问题 题解 错排问题

    作者:zifeiy 标签:排列组合,错排问题 题目链接:https://www.luogu.org/problem/P1595 题目描述:某人写了n封信和n个信封,如果所有的信都装错了信封.求所有信都 ...

  2. 洛谷——P1595 信封问题

    P1595 信封问题 题目描述 某人写了n封信和n个信封,如果所有的信都装错了信封.求所有信都装错信封共有多少种不同情况. 输入输出格式 输入格式: 一个信封数n(n<=20) 输出格式: 一个 ...

  3. 洛谷P1595 信封问题

    题目描述 某人写了n封信和n个信封,如果所有的信都装错了信封.求所有信都装错信封共有多少种不同情况. 输入输出格式 输入格式: 一个信封数n 输出格式: 一个整数,代表有多少种情况. 输入输出样例 输 ...

  4. 洛谷 P1595 信封问题

    题目描述 某人写了n封信和n个信封,如果所有的信都装错了信封.求所有信都装错信封共有多少种不同情况. 输入输出格式 输入格式: 一个信封数n 输出格式: 一个整数,代表有多少种情况. 输入输出样例 输 ...

  5. 洛谷 P3182 [HAOI2016]放棋子(高精度,错排问题)

    传送门 解题思路 不会错排问题的请移步——错排问题 && 洛谷 P1595 信封问题 这一道题其实就是求对于每一行的每一个棋子都放在没有障碍的地方的方案数. 因为障碍是每行.每列只有一 ...

  6. 洛谷P1056 排座椅

    洛谷P1056 排座椅 洛谷传送门 题目描述 上课的时候总会有一些同学和前后左右的人交头接耳,这是令小学班主任十分头疼的一件事情.不过,班主任小雪发现了一些有趣的现象,当同学们的座次确定下来之后,只有 ...

  7. 洛谷 P3182 [HAOI2016]放棋子(错排问题)

    题面 luogu 题解 裸的错排问题 错排问题 百度百科:\(n\)个有序的元素应有\(n!\)个不同的排列,如若一个排列使得所有的元素不在原来的位置上,则称这个排列为错排:有的叫重排.如,1 2的错 ...

  8. 洛谷——P4071 [SDOI2016]排列计数(错排+组合数学)

    P4071 [SDOI2016]排列计数 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳定的.序列 ...

  9. 洛谷 P1056 排座椅 桶排序

    桶排序大法好! 每次一看到这种范围小的题,本萌新就想用桶排. 因为题目中的m,n都小于1000,我们就可以定义两个1000的数组,表示每一行或每一列可以隔开几对讲话的童鞋. 然后再定义两个1000的数 ...

随机推荐

  1. 查询重复数据group by menu_id having count(menu_id)>1

    select * from sys_power_menu WHERE menu_id in ( select menu_id from  sys_power_menu group by menu_id ...

  2. SQL Server性能调优--优化建议(一)

    序言 当数据量小的时候,SQL优化或许无关紧要,但是当数据量达到一定量级之后,性能优化将变得至关重要,甚至决定系统成败. 定位慢查询 查询编译以来cpu耗时总量最多的前50条 --查询编译以来 cpu ...

  3. JS onclick中this用法

    当在dom元素中使用onclick绑定事件的时候,可以使用this来指向该元素对象. 打印输出的内容为: 所以可以通过该this对象来获取子元素 //通过element获取该对象下的一个audio标签 ...

  4. 一本通例题-生日蛋糕——题解<超强深搜剪枝,从无限到有限>

    题目传送 显然是道深搜题.由于蛋糕上表面在最底层的半径确认后就确认了,所以搜索时的面积着重看侧面积. 找维度/搜索面临状态/对象:当前体积v,当前外表面面积s,各层的半径r[],各层的高度h[]. 可 ...

  5. 在github pages网站下用jekyll制作博客教程

    https://www.jekyll.com.cn/ https://github.com/onevcat/vno-jekyll https://help.github.com/articles/us ...

  6. 「BalticOI 2011」Switch the Lamp On

    Casper is designing an electronic circuit on a \(N \times M\) rectangular grid plate. There are \(N ...

  7. MySQL数据库:RESET MASTER、RESET SLAVE、MASTER_INFO、RELAY_LOG_INFO

    MySQL数据库:RESET MASTER.RESET SLAVE.MASTER_INFO.RELAY_LOG_INFO RESET MASTER 删除所有index file中记录的所有binlog ...

  8. So the type system doesn’t feel so static.

    object wb{ def main(args:Array[String]){ println("Happy everyday!DATA-CENTER!") println(ne ...

  9. 【cs231n作业笔记】二:SVM分类器

    可以参考:cs231n assignment1 SVM 完整代码 231n作业   多类 SVM 的损失函数及其梯度计算(最好)https://blog.csdn.net/NODIECANFLY/ar ...

  10. Sails.js中文文档,Sails中文文档

    Sails.js中文文档   http://sailsdoc.swift.ren/ Sails.js是一个Web框架,可以于轻松构建自定义,企业级Node.js Apps.它在设计上类似于像Ruby ...