传送门


一道裸的错排问题

错排问题

百度百科上这样

就是对于一个排列,每一个数都不在正确的位置上的方案数。n 个元素的错排数记为 D(n)。

公式

D(n)=(n−1)∗(D(n−2)+D(n−1))

推出公式(感性)

对于第n个数,放在k位置上。

而第k个数有两种情况:

  • 当第k个数放到n位置时,相当于把k和n交换了位置,对剩下的n-2个数没有任何影响,所以方案数为D(n-2)。
  • 当第k个数不放到n位置时,相当于k由原来的不能放在k位置变成了不能放在n位置,对k和剩下的n-2个数即这n-1个数都没有影响,所以方案数为D(n-1)。

所以对于每个k,都有D(n-1)+D(n-2)种排法。而k有n-1种选择,所以要乘上n-1,最终得出公式D(n)=(n-1)*(D(n-1)+D(n-2))。

其中,D(1)初始化为0,D(2)初始化为1。

AC代码

 #include<iostream>
using namespace std;
long long ans[];
int main()
{
int n;
cin>>n;
ans[]=;
ans[]=;
for(int i=;i<=n;i++) ans[i]=(i-)*(ans[i-]+ans[i-]);
cout<<ans[n];
return ;
}

错排问题 && 洛谷 P1595 信封问题的更多相关文章

  1. 洛谷P1595 信封问题 题解 错排问题

    作者:zifeiy 标签:排列组合,错排问题 题目链接:https://www.luogu.org/problem/P1595 题目描述:某人写了n封信和n个信封,如果所有的信都装错了信封.求所有信都 ...

  2. 洛谷——P1595 信封问题

    P1595 信封问题 题目描述 某人写了n封信和n个信封,如果所有的信都装错了信封.求所有信都装错信封共有多少种不同情况. 输入输出格式 输入格式: 一个信封数n(n<=20) 输出格式: 一个 ...

  3. 洛谷P1595 信封问题

    题目描述 某人写了n封信和n个信封,如果所有的信都装错了信封.求所有信都装错信封共有多少种不同情况. 输入输出格式 输入格式: 一个信封数n 输出格式: 一个整数,代表有多少种情况. 输入输出样例 输 ...

  4. 洛谷 P1595 信封问题

    题目描述 某人写了n封信和n个信封,如果所有的信都装错了信封.求所有信都装错信封共有多少种不同情况. 输入输出格式 输入格式: 一个信封数n 输出格式: 一个整数,代表有多少种情况. 输入输出样例 输 ...

  5. 洛谷 P3182 [HAOI2016]放棋子(高精度,错排问题)

    传送门 解题思路 不会错排问题的请移步——错排问题 && 洛谷 P1595 信封问题 这一道题其实就是求对于每一行的每一个棋子都放在没有障碍的地方的方案数. 因为障碍是每行.每列只有一 ...

  6. 洛谷P1056 排座椅

    洛谷P1056 排座椅 洛谷传送门 题目描述 上课的时候总会有一些同学和前后左右的人交头接耳,这是令小学班主任十分头疼的一件事情.不过,班主任小雪发现了一些有趣的现象,当同学们的座次确定下来之后,只有 ...

  7. 洛谷 P3182 [HAOI2016]放棋子(错排问题)

    题面 luogu 题解 裸的错排问题 错排问题 百度百科:\(n\)个有序的元素应有\(n!\)个不同的排列,如若一个排列使得所有的元素不在原来的位置上,则称这个排列为错排:有的叫重排.如,1 2的错 ...

  8. 洛谷——P4071 [SDOI2016]排列计数(错排+组合数学)

    P4071 [SDOI2016]排列计数 求有多少种长度为 n 的序列 A,满足以下条件: 1 ~ n 这 n 个数在序列中各出现了一次 若第 i 个数 A[i] 的值为 i,则称 i 是稳定的.序列 ...

  9. 洛谷 P1056 排座椅 桶排序

    桶排序大法好! 每次一看到这种范围小的题,本萌新就想用桶排. 因为题目中的m,n都小于1000,我们就可以定义两个1000的数组,表示每一行或每一列可以隔开几对讲话的童鞋. 然后再定义两个1000的数 ...

随机推荐

  1. Spring Batch Hello World

    原创转载请注明出处:https://www.cnblogs.com/agilestyle/p/11995146.html Project Directory Maven Dependency < ...

  2. @PathVariable注解使用

    @PathVariable是spring3.0的一个新功能:接收请求路径中占位符的值 语法: @PathVariable("xxx")通过 @PathVariable 可以将URL ...

  3. Bugku 杂项 眼见非实(ISCCCTF)

    眼见非实(ISCCCTF) 下载文件后,用winhex打开 发现文件头为50 4B 03 04说明是一个压缩文件,还可以看到其中有.docx文件 更改文件后缀为 .zip 解压后发现 这个文件用wor ...

  4. B/S大文件下载+断点续传

    1.先将 webuploader-0.1.5.zip 这个文件下载下来:https://github.com/fex-team/webuploader/releases  根据个人的需求放置自己需要的 ...

  5. HDU 2037(贪心)

    “今年暑假不AC?” “是的.” “那你干什么呢?” “看世界杯呀,笨蛋!” “@#$%^&*%...” 确实如此,世界杯来了,球迷的节日也来了,估计很多ACMer也会抛开电脑,奔向电视了.  ...

  6. kohana附件上传

    try { $upload = Uploader::factory('Picture', $_FILES['Filedata'])->execute();}catch (Exception $e ...

  7. Oracle Like子句

    Oracle Like子句 作者:初生不惑 Oracle基础 评论:0 条 Oracle技术QQ群:175248146 在本教程中,您将学习如何使用Oracle LIKE运算符来测试列中的值是否与指定 ...

  8. ionic使用自定义icon

    参考文档:https://www.jianshu.com/p/5346fee9fd80  angular+ionic 自定义图标 注意: 这里不用name 用class类名显示出来 最后出来图标是个小 ...

  9. SpringBoot:配置文件及自动配置原理

    西部开源-秦疆老师:基于SpringBoot 2.1.6 的博客教程 秦老师交流Q群号: 664386224 未授权禁止转载!编辑不易 , 转发请注明出处!防君子不防小人,共勉! SpringBoot ...

  10. iOS Beta 升级或降级

    https://sspai.com/post/45442 public beta网站上安装profile, 去手机看更新 developer beta, 登录开发者网站, downloads, 下载p ...