TensorFlow线性回归
目录
数据可视化
梯度下降
结果可视化
|
数据可视化 |
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt # 随机生成1000个点,围绕在y=0.1x+0.3的直线周围
num_points = 1000
vectors_set = []
for i in range(num_points):
x1 = np.random.normal(0.0, 0.55)
y1 = x1 * 0.1 + 0.3 + np.random.normal(0.0, 0.03)
vectors_set.append([x1, y1]) # 生成一些样本
x_data = [v[0] for v in vectors_set]
y_data = [v[1] for v in vectors_set] plt.scatter(x_data,y_data,c='r')
plt.show()

|
梯度下降 |
# -*- coding: utf-8 -*-
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt # 随机生成1000个点,围绕在y=0.1x+0.3的直线周围
num_points = 1000
vectors_set = []
for i in range(num_points):
x1 = np.random.normal(0.0, 0.55)
y1 = x1 * 0.1 + 0.3 + np.random.normal(0.0, 0.03)
vectors_set.append([x1, y1]) # 生成一些样本
x_data = [v[0] for v in vectors_set]
y_data = [v[1] for v in vectors_set] # 生成1维的W矩阵,取值是[-1,1]之间的随机数
W = tf.Variable(tf.random_uniform([1], -1.0, 1.0), name='W')
# 生成1维的b矩阵,初始值是0
b = tf.Variable(tf.zeros([1]), name='b')
# 经过计算得出预估值y
y = W * x_data + b # 以预估值y和实际值y_data之间的均方误差作为损失
loss = tf.reduce_mean(tf.square(y - y_data), name='loss')
# 采用梯度下降法来优化参数
optimizer = tf.train.GradientDescentOptimizer(0.5) #参数是学习率
# 训练的过程就是最小化这个误差值
train = optimizer.minimize(loss, name='train') sess = tf.Session() init = tf.global_variables_initializer()
sess.run(init) # 初始化的W和b是多少
print ("W =", sess.run(W), "b =", sess.run(b), "loss =", sess.run(loss))
# 执行20次训练
for step in range(20):
sess.run(train)
# 输出训练好的W和b
print ("W =", sess.run(W), "b =", sess.run(b), "loss =", sess.run(loss))
'''
W = [ 0.72134733] b = [ 0.] loss = 0.204532
W = [ 0.54246926] b = [ 0.31014919] loss = 0.0552976
W = [ 0.41924465] b = [ 0.30693138] loss = 0.029155
W = [ 0.33045709] b = [ 0.30471471] loss = 0.0155833
W = [ 0.26648441] b = [ 0.30311754] loss = 0.00853772
W = [ 0.22039121] b = [ 0.30196676] loss = 0.00488007
W = [ 0.18718043] b = [ 0.3011376] loss = 0.00298124
W = [ 0.16325161] b = [ 0.30054021] loss = 0.00199547
W = [ 0.14601055] b = [ 0.30010974] loss = 0.00148373
W = [ 0.13358814] b = [ 0.29979959] loss = 0.00121806
W = [ 0.12463761] b = [ 0.29957613] loss = 0.00108014
W = [ 0.11818863] b = [ 0.29941514] loss = 0.00100854
W = [ 0.11354206] b = [ 0.29929912] loss = 0.000971367
W = [ 0.11019413] b = [ 0.29921553] loss = 0.00095207
W = [ 0.10778191] b = [ 0.29915532] loss = 0.000942053
W = [ 0.10604387] b = [ 0.29911193] loss = 0.000936852
W = [ 0.10479159] b = [ 0.29908064] loss = 0.000934153
W = [ 0.1038893] b = [ 0.29905814] loss = 0.000932751
W = [ 0.10323919] b = [ 0.2990419] loss = 0.000932023
W = [ 0.10277078] b = [ 0.29903021] loss = 0.000931646
W = [ 0.10243329] b = [ 0.29902178] loss = 0.00093145
'''
|
结果可视化 |
# -*- coding: utf-8 -*-
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt # 随机生成1000个点,围绕在y=0.1x+0.3的直线周围
num_points = 1000
vectors_set = []
for i in range(num_points):
x1 = np.random.normal(0.0, 0.55)
y1 = x1 * 0.1 + 0.3 + np.random.normal(0.0, 0.03)
vectors_set.append([x1, y1]) # 生成一些样本
x_data = [v[0] for v in vectors_set]
y_data = [v[1] for v in vectors_set] # 生成1维的W矩阵,取值是[-1,1]之间的随机数
W = tf.Variable(tf.random_uniform([1], -1.0, 1.0), name='W')
# 生成1维的b矩阵,初始值是0
b = tf.Variable(tf.zeros([1]), name='b')
# 经过计算得出预估值y
y = W * x_data + b # 以预估值y和实际值y_data之间的均方误差作为损失
loss = tf.reduce_mean(tf.square(y - y_data), name='loss')
# 采用梯度下降法来优化参数
optimizer = tf.train.GradientDescentOptimizer(0.5) #参数是学习率
# 训练的过程就是最小化这个误差值
train = optimizer.minimize(loss, name='train') sess = tf.Session() init = tf.global_variables_initializer()
sess.run(init) # 初始化的W和b是多少
print ("W =", sess.run(W), "b =", sess.run(b), "loss =", sess.run(loss))
# 执行20次训练
for step in range(20):
sess.run(train)
# 输出训练好的W和b
print ("W =", sess.run(W), "b =", sess.run(b), "loss =", sess.run(loss)) plt.scatter(x_data,y_data,c='r')
plt.plot(x_data,sess.run(W)*x_data+sess.run(b))
plt.show()

TensorFlow线性回归的更多相关文章
- [tensorflow] 线性回归模型实现
在这一篇博客中大概讲一下用tensorflow如何实现一个简单的线性回归模型,其中就可能涉及到一些tensorflow的基本概念和操作,然后因为我只是入门了点tensorflow,所以我只能对部分代码 ...
- python,tensorflow线性回归Django网页显示Gif动态图
1.工程组成 2.urls.py """Django_machine_learning_linear_regression URL Configuration The ` ...
- tensorflow 线性回归解决 iris 2分类
# Combining Everything Together #---------------------------------- # This file will perform binary ...
- 1.tensorflow——线性回归
tensorflow 1.一切都要tf. 2.只有sess.run才能生效 import tensorflow as tf import numpy as np import matplotlib.p ...
- tensorflow 线性回归 iris
线性拟合
- TensorFlow简要教程及线性回归算法示例
TensorFlow是谷歌推出的深度学习平台,目前在各大深度学习平台中使用的最广泛. 一.安装命令 pip3 install -U tensorflow --default-timeout=1800 ...
- TensorFlow API 汉化
TensorFlow API 汉化 模块:tf 定义于tensorflow/__init__.py. 将所有公共TensorFlow接口引入此模块. 模块 app module:通用入口点脚本. ...
- tfboys——tensorflow模块学习(三)
tf.estimator模块 定义在:tensorflow/python/estimator/estimator_lib.py 估算器(Estimator): 用于处理模型的高级工具. 主要模块 ex ...
- TensorFlow — 相关 API
TensorFlow — 相关 API TensorFlow 相关函数理解 任务时间:时间未知 tf.truncated_normal truncated_normal( shape, mean=0. ...
随机推荐
- js 获取当前月份 第一天和最后一天
js 获取当前月份 第一天和最后一天 var now = new Date(); //当前日期 var nowMonth = now.getMonth(); //当前月 var nowYear = n ...
- git 基本命令操作
配置 Git 的相关参数. Git 一共有3个配置文件: 1. 仓库级的配置文件:在仓库的 .git/.gitconfig,该配置文件只对所在的仓库有效.2. 全局配置文件:Mac 系统在 ~/.gi ...
- electron localStorage的bug
在更新 electron 后有可能会读不到 localStorage 里的数据 推测是 localStorage 写在 Chromium 内核里,更新 electron 同时会更新 Chromium, ...
- 在centos7上kvm网卡桥接
系统环境准备 [root@linux-node1 ~]# cat /etc/redhat-release CentOS Linux release (Core) [root@linux-node1 ~ ...
- 初识linux内核漏洞利用
0x00 简介 之前只接触过应用层的漏洞利用, 这次第一次接触到内核层次的,小结一下. 0x01 概况 这次接触到的,是吾爱破解挑战赛里的一个题,给了一个有问题的驱动程序,要求在ubuntu 14.0 ...
- flume--为搬砖而生,日志传输的一把好手
(一)flume的产生 为什么会有flume 随着互联网的发展,人们对网络日志产生的信息也越来越重视.不仅如此,我们的服务器,比如Nginx,每天都会产生大量的日志.我们要将这些日志收集到指定的地方, ...
- busybox介绍
BusyBox 是一个集成了一百多个最常用linux命令和工具的软件.BusyBox 将许多具有共性的小版本的UNIX工具结合到一个单一的可执行文件.这样的集合可以替代大部分常用工具比如的GNU fi ...
- golang 结构体嵌入和匿名成员
考虑一个二维的绘图程序,提供了一个各种图形的库,例如矩形.椭圆形.星形和轮形等几 何形状.这里是其中两个的定义 type Circle struct { X, Y, Radius int } type ...
- typedef 返回类型(*Function)(参数表) ——typedef函数指针
//首先看一下函数指针怎么用 #include <iostream> using namespace std; //定义一个函数指针pFUN,它指向一个返回类型为char,有一个整型的参数 ...
- 垃圾回收gc --翻译
原文在https://developer.mozilla.org/en-US/docs/Web/JavaScript/Memory_Management.基本保持了平译,并在一些地方做了概念解释.(转 ...