目录

  数据可视化

  梯度下降

  结果可视化


数据可视化

import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt # 随机生成1000个点,围绕在y=0.1x+0.3的直线周围
num_points = 1000
vectors_set = []
for i in range(num_points):
x1 = np.random.normal(0.0, 0.55)
y1 = x1 * 0.1 + 0.3 + np.random.normal(0.0, 0.03)
vectors_set.append([x1, y1]) # 生成一些样本
x_data = [v[0] for v in vectors_set]
y_data = [v[1] for v in vectors_set] plt.scatter(x_data,y_data,c='r')
plt.show()

返回目录

梯度下降

# -*- coding: utf-8 -*-
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt # 随机生成1000个点,围绕在y=0.1x+0.3的直线周围
num_points = 1000
vectors_set = []
for i in range(num_points):
x1 = np.random.normal(0.0, 0.55)
y1 = x1 * 0.1 + 0.3 + np.random.normal(0.0, 0.03)
vectors_set.append([x1, y1]) # 生成一些样本
x_data = [v[0] for v in vectors_set]
y_data = [v[1] for v in vectors_set] # 生成1维的W矩阵,取值是[-1,1]之间的随机数
W = tf.Variable(tf.random_uniform([1], -1.0, 1.0), name='W')
# 生成1维的b矩阵,初始值是0
b = tf.Variable(tf.zeros([1]), name='b')
# 经过计算得出预估值y
y = W * x_data + b # 以预估值y和实际值y_data之间的均方误差作为损失
loss = tf.reduce_mean(tf.square(y - y_data), name='loss')
# 采用梯度下降法来优化参数
optimizer = tf.train.GradientDescentOptimizer(0.5) #参数是学习率
# 训练的过程就是最小化这个误差值
train = optimizer.minimize(loss, name='train') sess = tf.Session() init = tf.global_variables_initializer()
sess.run(init) # 初始化的W和b是多少
print ("W =", sess.run(W), "b =", sess.run(b), "loss =", sess.run(loss))
# 执行20次训练
for step in range(20):
sess.run(train)
# 输出训练好的W和b
print ("W =", sess.run(W), "b =", sess.run(b), "loss =", sess.run(loss))
'''
W = [ 0.72134733] b = [ 0.] loss = 0.204532
W = [ 0.54246926] b = [ 0.31014919] loss = 0.0552976
W = [ 0.41924465] b = [ 0.30693138] loss = 0.029155
W = [ 0.33045709] b = [ 0.30471471] loss = 0.0155833
W = [ 0.26648441] b = [ 0.30311754] loss = 0.00853772
W = [ 0.22039121] b = [ 0.30196676] loss = 0.00488007
W = [ 0.18718043] b = [ 0.3011376] loss = 0.00298124
W = [ 0.16325161] b = [ 0.30054021] loss = 0.00199547
W = [ 0.14601055] b = [ 0.30010974] loss = 0.00148373
W = [ 0.13358814] b = [ 0.29979959] loss = 0.00121806
W = [ 0.12463761] b = [ 0.29957613] loss = 0.00108014
W = [ 0.11818863] b = [ 0.29941514] loss = 0.00100854
W = [ 0.11354206] b = [ 0.29929912] loss = 0.000971367
W = [ 0.11019413] b = [ 0.29921553] loss = 0.00095207
W = [ 0.10778191] b = [ 0.29915532] loss = 0.000942053
W = [ 0.10604387] b = [ 0.29911193] loss = 0.000936852
W = [ 0.10479159] b = [ 0.29908064] loss = 0.000934153
W = [ 0.1038893] b = [ 0.29905814] loss = 0.000932751
W = [ 0.10323919] b = [ 0.2990419] loss = 0.000932023
W = [ 0.10277078] b = [ 0.29903021] loss = 0.000931646
W = [ 0.10243329] b = [ 0.29902178] loss = 0.00093145
'''

返回目录

结果可视化

  

# -*- coding: utf-8 -*-
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt # 随机生成1000个点,围绕在y=0.1x+0.3的直线周围
num_points = 1000
vectors_set = []
for i in range(num_points):
x1 = np.random.normal(0.0, 0.55)
y1 = x1 * 0.1 + 0.3 + np.random.normal(0.0, 0.03)
vectors_set.append([x1, y1]) # 生成一些样本
x_data = [v[0] for v in vectors_set]
y_data = [v[1] for v in vectors_set] # 生成1维的W矩阵,取值是[-1,1]之间的随机数
W = tf.Variable(tf.random_uniform([1], -1.0, 1.0), name='W')
# 生成1维的b矩阵,初始值是0
b = tf.Variable(tf.zeros([1]), name='b')
# 经过计算得出预估值y
y = W * x_data + b # 以预估值y和实际值y_data之间的均方误差作为损失
loss = tf.reduce_mean(tf.square(y - y_data), name='loss')
# 采用梯度下降法来优化参数
optimizer = tf.train.GradientDescentOptimizer(0.5) #参数是学习率
# 训练的过程就是最小化这个误差值
train = optimizer.minimize(loss, name='train') sess = tf.Session() init = tf.global_variables_initializer()
sess.run(init) # 初始化的W和b是多少
print ("W =", sess.run(W), "b =", sess.run(b), "loss =", sess.run(loss))
# 执行20次训练
for step in range(20):
sess.run(train)
# 输出训练好的W和b
print ("W =", sess.run(W), "b =", sess.run(b), "loss =", sess.run(loss)) plt.scatter(x_data,y_data,c='r')
plt.plot(x_data,sess.run(W)*x_data+sess.run(b))
plt.show()

返回目录

TensorFlow线性回归的更多相关文章

  1. [tensorflow] 线性回归模型实现

    在这一篇博客中大概讲一下用tensorflow如何实现一个简单的线性回归模型,其中就可能涉及到一些tensorflow的基本概念和操作,然后因为我只是入门了点tensorflow,所以我只能对部分代码 ...

  2. python,tensorflow线性回归Django网页显示Gif动态图

    1.工程组成 2.urls.py """Django_machine_learning_linear_regression URL Configuration The ` ...

  3. tensorflow 线性回归解决 iris 2分类

    # Combining Everything Together #---------------------------------- # This file will perform binary ...

  4. 1.tensorflow——线性回归

    tensorflow 1.一切都要tf. 2.只有sess.run才能生效 import tensorflow as tf import numpy as np import matplotlib.p ...

  5. tensorflow 线性回归 iris

    线性拟合

  6. TensorFlow简要教程及线性回归算法示例

    TensorFlow是谷歌推出的深度学习平台,目前在各大深度学习平台中使用的最广泛. 一.安装命令 pip3 install -U tensorflow --default-timeout=1800 ...

  7. TensorFlow API 汉化

    TensorFlow API 汉化 模块:tf   定义于tensorflow/__init__.py. 将所有公共TensorFlow接口引入此模块. 模块 app module:通用入口点脚本. ...

  8. tfboys——tensorflow模块学习(三)

    tf.estimator模块 定义在:tensorflow/python/estimator/estimator_lib.py 估算器(Estimator): 用于处理模型的高级工具. 主要模块 ex ...

  9. TensorFlow — 相关 API

    TensorFlow — 相关 API TensorFlow 相关函数理解 任务时间:时间未知 tf.truncated_normal truncated_normal( shape, mean=0. ...

随机推荐

  1. java传值与传引用

    一.传值与传引用 1.不管java参数的类型是什么,一律传递参数的副本. 在thinking in java中,明确指出,如果java是传值,那么传递的是值的副本,如果java传递的是引用,那么传递的 ...

  2. Hadoop环境安装和集群创建

    虚拟机使用vmware,vmware可以直接百度下载安装 秘钥也能百度到 安装很简单 CentOS 7下载: 进入官网 https://www.centos.org/download/ 这里有三种 第 ...

  3. ubuntu16.04 Installing PHP 7.2

    //install sudo add-apt-repository ppa:ondrej/php sudo apt-get update sudo apt-get install php7.2 //C ...

  4. WPF:元素绑定

    到目前为止都在讨论如何链接两个元素的绑定.但在数据驱动的应用程序中,更常见的情况是创建从不可见的对象中提取数据绑定表达式.唯一的要求是希望显示的信息必须存储在公有的属性中.WPF数据绑定基础结构不能获 ...

  5. 第十八篇 JS传参数

    JS传参数   参数,这是个什么东西呢?简单的说吧,我们去玩别人的网站,一般来个登录,有用户名和密码,当我们输入正确之后,那么这用户名和密码里面的值,就是参数的值,它将这个值传给“参数”,然后提交到后 ...

  6. LLVM 安装教程(包安装)

    LLVM 安装教程 环境:ubuntu16.04  llvm-4.0 clang-4.0 步骤: 1.依赖库安装 $ sudo apt-get install build-essential curl ...

  7. 关于IDEA顶部栏隐藏问题,

    那天手残,点到了 IDEA顶部菜单栏 > View > Appearance >Main Menu ,然后取消了勾选 然后就成了这个样子,没了顶部栏,恢复不过来,不知道如何进行设置 ...

  8. PL/SQL Developer13安装教程

    参考: https://blog.csdn.net/qs17809259715/article/details/88855617

  9. SSD源码解读——网络测试

    之前,对SSD的论文进行了解读,可以回顾之前的博客:https://www.cnblogs.com/dengshunge/p/11665929.html. 为了加深对SSD的理解,因此对SSD的源码进 ...

  10. 火狐插件simple timer 定时打开指定网页

    今天我要介绍的是火狐浏览器一款插件:Simple Timer,该插件是火狐一个可以添加计时器和定时提醒功能插件,该插件的主要作用就是当你的设置在某一个时刻提醒时,插件会自动弹出通知,并且自动打开你想要 ...