TensorFlow线性回归
目录
数据可视化
梯度下降
结果可视化
数据可视化 |
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt # 随机生成1000个点,围绕在y=0.1x+0.3的直线周围
num_points = 1000
vectors_set = []
for i in range(num_points):
x1 = np.random.normal(0.0, 0.55)
y1 = x1 * 0.1 + 0.3 + np.random.normal(0.0, 0.03)
vectors_set.append([x1, y1]) # 生成一些样本
x_data = [v[0] for v in vectors_set]
y_data = [v[1] for v in vectors_set] plt.scatter(x_data,y_data,c='r')
plt.show()
梯度下降 |
# -*- coding: utf-8 -*-
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt # 随机生成1000个点,围绕在y=0.1x+0.3的直线周围
num_points = 1000
vectors_set = []
for i in range(num_points):
x1 = np.random.normal(0.0, 0.55)
y1 = x1 * 0.1 + 0.3 + np.random.normal(0.0, 0.03)
vectors_set.append([x1, y1]) # 生成一些样本
x_data = [v[0] for v in vectors_set]
y_data = [v[1] for v in vectors_set] # 生成1维的W矩阵,取值是[-1,1]之间的随机数
W = tf.Variable(tf.random_uniform([1], -1.0, 1.0), name='W')
# 生成1维的b矩阵,初始值是0
b = tf.Variable(tf.zeros([1]), name='b')
# 经过计算得出预估值y
y = W * x_data + b # 以预估值y和实际值y_data之间的均方误差作为损失
loss = tf.reduce_mean(tf.square(y - y_data), name='loss')
# 采用梯度下降法来优化参数
optimizer = tf.train.GradientDescentOptimizer(0.5) #参数是学习率
# 训练的过程就是最小化这个误差值
train = optimizer.minimize(loss, name='train') sess = tf.Session() init = tf.global_variables_initializer()
sess.run(init) # 初始化的W和b是多少
print ("W =", sess.run(W), "b =", sess.run(b), "loss =", sess.run(loss))
# 执行20次训练
for step in range(20):
sess.run(train)
# 输出训练好的W和b
print ("W =", sess.run(W), "b =", sess.run(b), "loss =", sess.run(loss))
'''
W = [ 0.72134733] b = [ 0.] loss = 0.204532
W = [ 0.54246926] b = [ 0.31014919] loss = 0.0552976
W = [ 0.41924465] b = [ 0.30693138] loss = 0.029155
W = [ 0.33045709] b = [ 0.30471471] loss = 0.0155833
W = [ 0.26648441] b = [ 0.30311754] loss = 0.00853772
W = [ 0.22039121] b = [ 0.30196676] loss = 0.00488007
W = [ 0.18718043] b = [ 0.3011376] loss = 0.00298124
W = [ 0.16325161] b = [ 0.30054021] loss = 0.00199547
W = [ 0.14601055] b = [ 0.30010974] loss = 0.00148373
W = [ 0.13358814] b = [ 0.29979959] loss = 0.00121806
W = [ 0.12463761] b = [ 0.29957613] loss = 0.00108014
W = [ 0.11818863] b = [ 0.29941514] loss = 0.00100854
W = [ 0.11354206] b = [ 0.29929912] loss = 0.000971367
W = [ 0.11019413] b = [ 0.29921553] loss = 0.00095207
W = [ 0.10778191] b = [ 0.29915532] loss = 0.000942053
W = [ 0.10604387] b = [ 0.29911193] loss = 0.000936852
W = [ 0.10479159] b = [ 0.29908064] loss = 0.000934153
W = [ 0.1038893] b = [ 0.29905814] loss = 0.000932751
W = [ 0.10323919] b = [ 0.2990419] loss = 0.000932023
W = [ 0.10277078] b = [ 0.29903021] loss = 0.000931646
W = [ 0.10243329] b = [ 0.29902178] loss = 0.00093145
'''
结果可视化 |
# -*- coding: utf-8 -*-
import numpy as np
import tensorflow as tf
import matplotlib.pyplot as plt # 随机生成1000个点,围绕在y=0.1x+0.3的直线周围
num_points = 1000
vectors_set = []
for i in range(num_points):
x1 = np.random.normal(0.0, 0.55)
y1 = x1 * 0.1 + 0.3 + np.random.normal(0.0, 0.03)
vectors_set.append([x1, y1]) # 生成一些样本
x_data = [v[0] for v in vectors_set]
y_data = [v[1] for v in vectors_set] # 生成1维的W矩阵,取值是[-1,1]之间的随机数
W = tf.Variable(tf.random_uniform([1], -1.0, 1.0), name='W')
# 生成1维的b矩阵,初始值是0
b = tf.Variable(tf.zeros([1]), name='b')
# 经过计算得出预估值y
y = W * x_data + b # 以预估值y和实际值y_data之间的均方误差作为损失
loss = tf.reduce_mean(tf.square(y - y_data), name='loss')
# 采用梯度下降法来优化参数
optimizer = tf.train.GradientDescentOptimizer(0.5) #参数是学习率
# 训练的过程就是最小化这个误差值
train = optimizer.minimize(loss, name='train') sess = tf.Session() init = tf.global_variables_initializer()
sess.run(init) # 初始化的W和b是多少
print ("W =", sess.run(W), "b =", sess.run(b), "loss =", sess.run(loss))
# 执行20次训练
for step in range(20):
sess.run(train)
# 输出训练好的W和b
print ("W =", sess.run(W), "b =", sess.run(b), "loss =", sess.run(loss)) plt.scatter(x_data,y_data,c='r')
plt.plot(x_data,sess.run(W)*x_data+sess.run(b))
plt.show()
TensorFlow线性回归的更多相关文章
- [tensorflow] 线性回归模型实现
在这一篇博客中大概讲一下用tensorflow如何实现一个简单的线性回归模型,其中就可能涉及到一些tensorflow的基本概念和操作,然后因为我只是入门了点tensorflow,所以我只能对部分代码 ...
- python,tensorflow线性回归Django网页显示Gif动态图
1.工程组成 2.urls.py """Django_machine_learning_linear_regression URL Configuration The ` ...
- tensorflow 线性回归解决 iris 2分类
# Combining Everything Together #---------------------------------- # This file will perform binary ...
- 1.tensorflow——线性回归
tensorflow 1.一切都要tf. 2.只有sess.run才能生效 import tensorflow as tf import numpy as np import matplotlib.p ...
- tensorflow 线性回归 iris
线性拟合
- TensorFlow简要教程及线性回归算法示例
TensorFlow是谷歌推出的深度学习平台,目前在各大深度学习平台中使用的最广泛. 一.安装命令 pip3 install -U tensorflow --default-timeout=1800 ...
- TensorFlow API 汉化
TensorFlow API 汉化 模块:tf 定义于tensorflow/__init__.py. 将所有公共TensorFlow接口引入此模块. 模块 app module:通用入口点脚本. ...
- tfboys——tensorflow模块学习(三)
tf.estimator模块 定义在:tensorflow/python/estimator/estimator_lib.py 估算器(Estimator): 用于处理模型的高级工具. 主要模块 ex ...
- TensorFlow — 相关 API
TensorFlow — 相关 API TensorFlow 相关函数理解 任务时间:时间未知 tf.truncated_normal truncated_normal( shape, mean=0. ...
随机推荐
- java传值与传引用
一.传值与传引用 1.不管java参数的类型是什么,一律传递参数的副本. 在thinking in java中,明确指出,如果java是传值,那么传递的是值的副本,如果java传递的是引用,那么传递的 ...
- Hadoop环境安装和集群创建
虚拟机使用vmware,vmware可以直接百度下载安装 秘钥也能百度到 安装很简单 CentOS 7下载: 进入官网 https://www.centos.org/download/ 这里有三种 第 ...
- ubuntu16.04 Installing PHP 7.2
//install sudo add-apt-repository ppa:ondrej/php sudo apt-get update sudo apt-get install php7.2 //C ...
- WPF:元素绑定
到目前为止都在讨论如何链接两个元素的绑定.但在数据驱动的应用程序中,更常见的情况是创建从不可见的对象中提取数据绑定表达式.唯一的要求是希望显示的信息必须存储在公有的属性中.WPF数据绑定基础结构不能获 ...
- 第十八篇 JS传参数
JS传参数 参数,这是个什么东西呢?简单的说吧,我们去玩别人的网站,一般来个登录,有用户名和密码,当我们输入正确之后,那么这用户名和密码里面的值,就是参数的值,它将这个值传给“参数”,然后提交到后 ...
- LLVM 安装教程(包安装)
LLVM 安装教程 环境:ubuntu16.04 llvm-4.0 clang-4.0 步骤: 1.依赖库安装 $ sudo apt-get install build-essential curl ...
- 关于IDEA顶部栏隐藏问题,
那天手残,点到了 IDEA顶部菜单栏 > View > Appearance >Main Menu ,然后取消了勾选 然后就成了这个样子,没了顶部栏,恢复不过来,不知道如何进行设置 ...
- PL/SQL Developer13安装教程
参考: https://blog.csdn.net/qs17809259715/article/details/88855617
- SSD源码解读——网络测试
之前,对SSD的论文进行了解读,可以回顾之前的博客:https://www.cnblogs.com/dengshunge/p/11665929.html. 为了加深对SSD的理解,因此对SSD的源码进 ...
- 火狐插件simple timer 定时打开指定网页
今天我要介绍的是火狐浏览器一款插件:Simple Timer,该插件是火狐一个可以添加计时器和定时提醒功能插件,该插件的主要作用就是当你的设置在某一个时刻提醒时,插件会自动弹出通知,并且自动打开你想要 ...