题目传送门

https://lydsy.com/JudgeOnline/problem.php?id=3754

题解

感觉这个思路挺神仙的。

后悔没有好好观察题目的数据范围,一直把 \(n\) 和 \(m\) 当成 1e5 来思考,\(c\) 竟然也只有 \(100\)。


有了数据范围以后可以发现,边权和位于 \(nc\) 级别,大概就是 \(10000\) 左右。

所以我们可以考虑枚举边权和,从而得到边权的平均数。

然后我们给每一条边的边权赋值为 \((\)原始边权 \(-\) 平均数\()^2\)。这样求出最小生成树。

但是有一个问题就是我们求出来的最小生成树的边权和不一定就是我们枚举的边权和。

不过很容易发现如果边权和不是我们枚举的边权和,那么我们在实际的边权和的地方计算出来的结果一定比这个优。所以没有影响。

上面的结论证明的话,大概就是考虑实际边权和为 \(s\),实际平方和为 \(t\)。我们枚举的平均数为 \(v\)。

\[\begin{align*}
Sum &= \sum (a_i - v) ^ 2\\
&= \sum a_i^2 - 2a_iv + nv^2\\
&= t - 2sv + nv^2
\end{align*}
\]

显然当 \(v = \frac sn\) 的时候最优,也就是 \(v\) 就是平均数的时候最优。


时间复杂度 \(O(ncm\log m)\)。

我跑的好慢啊。

#include<bits/stdc++.h>

#define fec(i, x, y) (int i = head[x], y = g[i].to; i; i = g[i].ne, y = g[i].to)
#define dbg(...) fprintf(stderr, __VA_ARGS__)
#define File(x) freopen(#x".in", "r", stdin), freopen(#x".out", "w", stdout)
#define fi first
#define se second
#define pb push_back template<typename A, typename B> inline char smax(A &a, const B &b) {return a < b ? a = b, 1 : 0;}
template<typename A, typename B> inline char smin(A &a, const B &b) {return b < a ? a = b, 1 : 0;} typedef long long ll; typedef unsigned long long ull; typedef std::pair<int, int> pii; template<typename I> inline void read(I &x) {
int f = 0, c;
while (!isdigit(c = getchar())) c == '-' ? f = 1 : 0;
x = c & 15;
while (isdigit(c = getchar())) x = (x << 1) + (x << 3) + (c & 15);
f ? x = -x : 0;
} const int N = 100 + 7;
const int M = 1000 + 7; int n, m;
int fa[N];
struct Edges { int x, y, z; double w; } e[M];
inline bool operator < (const Edges &a, const Edges &b) { return a.w < b.w; }
inline bool operator > (const Edges &a, const Edges &b) { return a.w > b.w; } inline int find(int x) { return fa[x] == x ? x : fa[x] = find(fa[x]); } inline double kruskal(bool flag = 0) {
if (!flag) std::sort(e + 1, e + m + 1);
else std::sort(e + 1, e + m + 1, std::greater<Edges>());
for (int i = 1; i <= n; ++i) fa[i] = i;
double ans = 0;
for (int i = 1; i <= m; ++i) {
int x = find(e[i].x), y = find(e[i].y);
if (x == y) continue;
fa[y] = x, ans += e[i].w;
}
return ans;
} inline void work() {
int l = kruskal(), r = kruskal(1);
double ans = 1e10;
for (int i = l; i <= r; ++i) {
double v = (double)i / (n - 1);
for (int j = 1; j <= m; ++j) e[j].w = (e[j].z - v) * (e[j].z - v);
smin(ans, kruskal());
}
printf("%.4lf\n", sqrt(ans / (n - 1)));
} inline void init() {
read(n), read(m);
for (int i = 1; i <= m; ++i) read(e[i].x), read(e[i].y), read(e[i].z), e[i].w = e[i].z;
} int main() {
#ifdef hzhkk
freopen("hkk.in", "r", stdin);
#endif
init();
work();
fclose(stdin), fclose(stdout);
return 0;
}

bzoj3754 Tree之最小方差树 最小生成树+推性质的更多相关文章

  1. [BZOJ3080]Minimum Variance Spanning Tree/[BZOJ3754]Tree之最小方差树

    [BZOJ3080]Minimum Variance Spanning Tree/[BZOJ3754]Tree之最小方差树 题目大意: 给定一个\(n(n\le50)\)个点,\(m(m\le1000 ...

  2. [BZOJ3754]Tree之最小方差树

    3754: Tree之最小方差树 Time Limit: 20 Sec  Memory Limit: 256 MBSubmit: 402  Solved: 152[Submit][Status][Di ...

  3. 【bzoj3754】Tree之最小方差树 最小生成树

    题目描述 给出一张无向图,求它的一棵生成树,使得选出的所有边的方差最小.输出这个最小方差. 输入 第一行两个正整数N,M 接下来M行,每行三个正整数Ui,Vi,Ci N<=100,M<=2 ...

  4. 【枚举】【最小生成树】【kruscal】bzoj3754 Tree之最小方差树

    发现,若使方差最小,则使Σ(wi-平均数)2最小即可. 因为权值的范围很小,所以我们可以枚举这个平均数,每次把边权赋成(wi-平均数)2,做kruscal. 但是,我们怎么知道枚举出来的平均数是不是恰 ...

  5. bzoj 3754: Tree之最小方差树 模拟退火+随机三分

    题目大意: 求最小方差生成树.N<=100,M<=2000,Ci<=100 题解: 首先我们知道这么一个东西: 一些数和另一个数的差的平方之和的最小值在这个数是这些数的平均值时取得 ...

  6. 【BZOJ 3754】: Tree之最小方差树

    题目链接: TP 题解: 都是骗子233,我还以为是什么神奇的算法. 由于边权的范围很小,最小生成树和最大生成树之间的总和差不会太大,所以可以枚举边权和,再直接根据方差建最小生成树,每次更新答案即可. ...

  7. BZOJ 3754 Tree之最小方差树 MST

    Description Wayne 在玩儿一个很有趣的游戏.在游戏中,Wayne 建造了N 个城市,现在他想在这些城市间修一些公路,当然并不是任意两个城市间都能修,为了道路系统的美观,一共只有M 对城 ...

  8. 【BZOJ 3754】Tree之最小方差树

    http://www.lydsy.com/JudgeOnline/problem.php?id=3754 核心思想:暴力枚举所有可能的平均数,对每个平均数排序后Kruskal. 正确的答案一定是最小的 ...

  9. BZOJ 3754 Tree之最小方差树

    枚举平均数. mdzz编译器. #include<iostream> #include<cstdio> #include<cstring> #include< ...

随机推荐

  1. Hook exe 和 file

    c#拦截程序的运行 EasyHook  + win7 64位 LocalHook.GetProcAddress("Kernel32.dll", "CreateProces ...

  2. 三、Appium-python-UI自动化之元素定位uiautomatorviewer

    uiautomatorviewer是android-sdk自带的一个元素定位工具,非常简单好用,使用uiautomatorviewer,可以检查一个应用的UI来查看应用的布局和组件以及相关的属性. 一 ...

  3. vim系统剪切板

    原文地址 1.vim常用复制粘贴命令 Vim的复制粘贴命令无疑是y (yank),p(paster),加上yy,P PS: vim有个很有意思的约定(我觉得是一种约定),就是某个命令的大小写都是实现某 ...

  4. Python 笔试集(3):编译/解释?动态/静态?强/弱?Python 是一门怎样的语言

    面试题 解释/编译?动态/静态?强/弱?Python 到底是一门怎样的语言? 编译 or 解释? 编译.解释都是指将(与人类亲和的)编程语言翻译成(计算机能够理解的)机器语言(Machine code ...

  5. 阶段3 1.Mybatis_11.Mybatis的缓存_3 mybatis一对一实现延迟加载

    不用骨架创建项目 复制一对多的代码src下的代码到我们刚才创建的项目里面 把依赖信息复制过来 这里原来实现的功能是立即加载的功能.sql语句是一次性查询的两个表关联的查询. 调整代码 删除Accoun ...

  6. Python学习之==>URL编码解码&if __name__ == '__main__'

    一.URL编码解码 url的编码解码需要用到标准模块urllib中的parse方法 from urllib import parse url = 'http://www.baidu.com?query ...

  7. Jmeter运行后,查看结果树中的响应数据出现中文乱码。

    参考:https://blog.csdn.net/qq_15228737/article/details/82597482 https://baike.baidu.com/item/UTF-8/481 ...

  8. IP地址相关运算(如VLSM,超网汇总)

    1.根据IP地址+子网掩码算出IP地址所在的网段(网络号) 例子: IP地址192.168.10.33,子网掩码为:255.255.255.240 (/28) ,写出所在的网络号 1.得出子网的块大小 ...

  9. [转帖]mysql数据库主从配置

    mysql数据库主从配置 https://www.toutiao.com/i6680489302947791371/ 多做实验 其实挺简单的 很多东西 要提高自信 去折腾. 架构与我 2019-04- ...

  10. [转帖]K8s集群安装--最新版 Kubernetes 1.14.1

    K8s集群安装--最新版 Kubernetes 1.14.1 http://www.cnblogs.com/jieky/p/10679998.html 原作者写的比较简单 大略流程和跳转的多一些 改天 ...